On the existence of harmonic functions in L^p

By BUI HUY QUI and Yoshihiro MIZUTA

(Received Oct. 25, 1979)

Let D be a domain in the n-dimensional Euclidean space R^n $(n \ge 2)$, and let $A_p(D)$ (resp. $H_p(D)$), $1 , be the space of all functions in <math>L^p(D)$ each of which is holomorphic (resp. harmonic) in D if n=2 (resp. $n \ge 3$). Carleson [2] proved in case n=2 that

- i) if p>2 and $C_q(R^2-D)>0$, 1/p+1/q=1, then $A_p(D)$ contains a non-constant function;
- ii) if p>2 and $\Lambda_{2-q}(R^2-D)<\infty$, then $A_p(D)=\{0\}$. Here C_α denotes the Riesz capacity with respect to the kernel $r^{\alpha-n}$, and Λ_α denotes the α -dimensional Hausdorff measure.

To improve this result, it is convenient to use the Bessel capacity; the Bessel capacity of index (α, r) , $\alpha > 0$, $1 < r < \infty$, is denoted by $B_{\alpha, r}$ (cf. Meyers [4]). Further, we say that a class of functions is non-trivial if it contains a non-constant function.

Our main aim is to prove the following theorems.

THEOREM 1. (i) If $B_{1,q}(R^2-D)=0$, then $A_p(D)=\{0\}$.

- (ii) If $p \ge 2$ and $B_{1,q}(R^2-D) > 0$, then $A_p(D)$ is non-trivial.
- (iii) If p<2 and R^2-D contains at least two points, then $A_p(D)$ is non-trivial.

THEOREM 2. (i) If $B_{2,q}(R^n-D)=0$, then $H_p(D)=\{0\}$.

- (ii) If $2q \le n$ and $B_{2,q}(R^n D) > 0$, then $H_p(D)$ is non-trivial.
- (iii) If 2q > n, $q \neq n$ and $R^n D$ contains at least two points, then $H_p(D)$ is non-trivial.
 - (iv) If q=n and $R^n-D\supset \{x^0, 0, -x^0\}$, $x^0\neq 0$, then $H_p(D)$ is non-trivial.

REMARK 1. (i) If q < n < 2q and $D = R^n - \{x^{(1)}, x^{(2)}\}$, $x^{(1)} \neq x^{(2)}$, then $H_p(D) = \{cu : c \in R^1\}$, where

$$u(x) = |x-x^{(1)}|^{2-n} - |x-x^{(2)}|^{2-n}$$
.

(ii) If q > n and $D = R^n - \{x^{(1)}, x^{(2)}\}, x^{(1)} \neq x^{(2)}$, then $H_p(D) = \left\{ \sum_{i=0}^n c_i u_i; c_i \in R^1 \text{ for } i = 0, 1, \cdots, n \right\}$, where

This research was partially supported by Grant-in-Aid for Scientific Research (No. 574070), Ministry of Education.