On G-extensible regularity condition and Thom-Boardman singularities

By Shyūichi IZUMIYA

(Received Sept. 2, 1978) (Revised Oct. 17, 1979)

0. Introduction.

In [2], we have defined a G-extensible regularity condition on equivariant sections of differentiable G-fibre bundle P. In this paper, we only consider the case where P is a trivial G-fibre bundle as an application of Theorem 1.3 in [2].

We now formulate as follows: Let G be a compact Lie group. Let X, Y be smooth G-manifolds. Then the r-jet bundle $J^r(X, Y)$ is naturally a differentiable G-fibre bundle such that the action of G on $J^r(X, Y)$ is defined by $g(j_x^r f)$ $= j_{gx}^r(gfg^{-1})$ where $g \in G$ and f is a germ of a map $X \to Y$ at $x \in X$. Let $J_G^r(X, Y)$ be the subspace of $J^r(X, Y)$ consisting of r-jets of "equivariant local maps" $X \to Y$. Then $J_G^r(X, Y)$ is a G-invariant subspace of $J^r(X, Y)$.

Now let $\mathcal{Q}(X, Y)$ be an open G-subbundle of $J^r(X, Y) \to X$ invariant under the natural action by local equivariant diffeomorphism of X on $J^r(X, Y)$. Then $\mathcal{Q}(X, Y)$ is called a *natural stable regularity condition*.

We shall say that a map $f: X \to Y$ is Ω -regular if $j^r f(X) \subset \Omega(X, Y)$.

DEFINITION 0.1. Let $\Omega(X, Y)$ be a natural stable regularity condition. We say that $\Omega(X, Y)$ is *G*-extensible if the following conditions hold:

There exists a natural stable regularity condition $\Omega'(X \times \mathbf{R}, Y) \subset J^r(X \times \mathbf{R}, Y)$ (where G acts on **R** trivially) such that

 $\begin{cases} \pi(i^*(\mathcal{Q}'(X \times \mathbf{R}, Y))) = \mathcal{Q}(X, Y) \\ \pi(i^*(\mathcal{Q}'(X \times \mathbf{R}, Y) \cap J^r_G(X \times \mathbf{R}, Y))) = \mathcal{Q}(X, Y) \cap J^r_G(X, Y), \end{cases}$

where $\pi: i^*(J^r(X \times \mathbf{R}, Y)) \to J^r(X, Y)$ is defined by $\pi(j^r_{(x,0)}f) = j^r_x fi$ for the canonical inclusion $i: X \subseteq X \times \mathbf{R}$. (We call that $\mathcal{Q}'(X \times \mathbf{R}, Y)$ is the *extension* of $\mathcal{Q}(X, Y)$).

From [2], we have the following theorem.

THEOREM 0.2. Let $C^{\infty}_{GQ}(X, Y)$ be the space of the Ω -regular equivariant maps $X \to Y$, with the C^{∞}-topology, and let $\Gamma^{\circ}_{G}(\Omega_{G}(X, Y))$ be the space of continuous equivariant sections of the map $\Omega(X, Y) \cap J^{\circ}_{G}(X, Y) \to X$ (with the compact-open topology). Then, if $\Omega(X, Y)$ is G-extensible,

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57034), Ministry of Education.