Regular embeddings of C*-algebras in monotone complete C*-algebras

By Masamichi HAMANA

(Received Nov. 27, 1978) (Revised May 10, 1979)

Introduction.

Let A be a unital C*-algebra and $A_{s.a.}$ the self-adjoint part of A. If each bounded increasing net (resp. sequence) in $A_{s.a.}$ has a supremum then A is said to be monotone (resp. monotone σ -) complete. [In the literature, e. g., [10, 16, 20], the adjective "monotone (resp. monotone σ -) closed" is employed as a synonym for "monotone (resp. monotone σ -) complete", but in this paper we will use it in a different sense (cf. Definition 1.2).] As was shown by J. D. M. Wright [22], each unital C*-algebra A possesses a unique regular σ -completion, i. e., a monotone σ -complete C*-algebra \hat{A} which contains A as a C*-subalgebra and satisfies the following properties:

i) $\hat{A}_{s.a.}$ itself is a unique monotone σ -closed subspace of $\hat{A}_{s.a.}$ which contains $A_{s.a.}$;

ii) each x in $\hat{A}_{s.a.}$ is the supremum in $\hat{A}_{s.a.}$ of $\{a \in A_{s.a.} : a \leq x\}$; and

iii) whenever a subset \mathcal{F} of $A_{s.a.}$ has a supremum x in $A_{s.a.}$ then x remains the supremum of \mathcal{F} in $\hat{A}_{s.a.}$.

On the other hand the present author proved in [6] that each unital C^* -algebra A has a unique *injective envelope*, which will be written as I(A), i.e., a minimal injective C^* -algebra containing A as a C^* -subalgebra. In this paper we give a monotone complete version of the above J. D. M. Wright's result by embedding A in its injective envelope I(A) (Theorem 3.1). Namely it is shown that the monotone closure \overline{A} of A in I(A) is a monotone complete C^* -algebra which satisfies the above properties i), ii) and iii) with \hat{A} replaced by \overline{A} and moreover "monotone σ -" in i) replaced by "monotone". We call \overline{A} the *regular monotone completion* of A. To see that \overline{A} satisfies ii) we consider the family of all unital C^* -algebras which contain A as a C^* -subalgebra and satisfy ii) (called "regular extensions" of A) and we show that, instead of \overline{A} , a maximal regular extension of A, written \widetilde{A} , is realized as a monotone closed C^* -subalgebra of I(A), hence that $\overline{A} \subset \widetilde{A} \subset \widetilde{A} \subset \widetilde{A} \subset \widetilde{A}(A)$; however it remains open