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\S 0. Introduction.

Let $\Pi_{n}$ be the class of all trigonometric polynomials of degree $n$ or less.
If $f$ is a continuous $ 2\pi$-periodic function, the n-th degree of approximation for
$f$ is defined by

$E_{n}(f)=\inf_{T\in\Pi_{n}}\Vert f-T\Vert=\inf_{T\in\Pi_{n}}\sup_{|x|\leq\pi}|f(x)-T(x)|$ .

Let the class $W^{(p)}(p\geqq 1)$ consist of all the $ 2\pi$-periodic functions for which there
exists a $(p-1)$-th absolutely continuous derivative $f^{(p-1)}(x)$ , and $|f^{(p)}(x)|\leqq 1$ al-
most everywhere. The exact value of $E_{n}(W^{(p)})=\sup_{)J\in W}E_{n}(f)$ is well-known.

THEOREM A. (Favard [1], Akhiezer and Krein [2]) The degree of aPproxi-
mation of the classes $W^{(p)},$ $p=1,2,$ $\cdots$ is given by

$E_{n-1}(W^{(p)})=K_{p}n^{-p}$ , $n=1,2,$ $\cdots$ ,
where

(0.1) $K_{p}=(4/\pi)\sum_{k=0}^{\infty}(-1)^{k(p+1)}(2k+1)^{-p-1}$ .

The class $\tilde{W}^{(p)}$ conjugate to $W^{(p)}$ consists of all conjugate functions $f$ of
$f\in W^{(p)}$ , that is,

$W^{p)}=$ {$f;f(x)=(-2/\pi)\int_{0}^{\pi}[f(x+f)-f(x-t)]$ cot $(t/2)dt,$ $f\in W^{(p)}$ }.

The exact value of $E_{n}(\tilde{W}^{(p)})$ is also known.
THEOREM B. (Akhiezer and Krein [2]) The degree of aPprorimation of the

classes $\varphi_{(p)},$ $p=1,2,$ $\cdots$ is given by

$E_{n-1}(\tilde{W}^{(p)})=\tilde{K}_{p}n^{-p}$ , $n=1,2,$ $\cdots$ ,
where

(0.2) $K_{p}=(4/\pi)\sum_{\iota=0}^{\infty}(-1)^{kp}(2k+1)^{-p-1}$ .


