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The purpose of this paper is to give an introduction to the homological
theory of comodules over coalgebras and Hopf algebras. Section 1 is a self-
contained exposition of basic concepts such as cotensor product, injective
comodules and change of coalgebras. Some results analogous to the results
(Cline-Parshall-Scott [2], Hochschild [5]) on rational modules over affine algebraic
groups are proved. Section 2 deals with the representation theory of co-Fro-
benius coalgebras and coseparable coalgebras. We reproduce in this section
some of Lin’s results [7] and Larson’s results [6], partly with simplified proof.
Section 3 deals with the cohomology theory of coalgebras.

Throughout this paper, the field $k$ is fixed. Vector spaces over $k$ are called
$k$ -spaces, and linear maps between $k$-spaces are called k-maps. We freely use
the terminology and results of Sweedler [9].

\S 1. Coalgebras and comodules.

A coalgebra over $k$ is a k-space $C$ together with k-maps $\Delta:C\rightarrow C\otimes C$ and
$\epsilon$ : $C\rightarrow k$ such that $(I\otimes\Delta)\Delta=(\Delta\otimes I)\Delta$ and $(I\otimes\epsilon)\Delta=(\epsilon\otimes I)\Delta=I$ . If $C$ is a coal-
gebra, a left C-comodule is a $k$ -space $M$ together with a $k$ -map $\rho_{M}$ : $M\rightarrow C\otimes M$

such that $(I\otimes\rho_{M})\rho_{M}=(\Delta\otimes I)\rho_{M}$ and $(\epsilon\otimes I)\rho_{M}=I$ . If $M$ and $N$ are left C-comod-
ules, a comodule map from $M$ to $N$ is a k-map $f:M\rightarrow N$ such that $(I\otimes f)\rho_{M}=$

$\rho_{N}f$. The k-space of all comodule maps from $M$ to $N$ is denoted by $Com_{C}(M, N)$

and the category of left C-comodules is denoted by $cM$ . Similarly, we define
$M^{c}$ , the category of right C-comodules.

1.1. Cotensor products and injective comodules.

If $M$ is a right C-comodule and $N$ is a left C-comodule, the cotensor Product
$M\coprod_{c}N$ is the kernel of the k-map

$\rho_{M}\otimes I-I\otimes\rho_{N}$ : $M\otimes N\rightarrow M\otimes C\otimes N$ .
Given comodule maps $f:M\rightarrow M^{\prime}$ and $g:N\rightarrow N^{\prime}$ , the k-map $f\otimes g:M\otimes N\rightarrow_{1}lf^{\prime}\otimes N^{\prime}$

induces a k-map


