Non existence of irreducible birecurrent Riemannian manifold of dimension $\geqq 3$

By Hidekiyo Wakakuwa

(Received Oct. 20, 1978)
(Revised Feb. 15, 1979)

Introduction.

Formerly, A. Lichnerowicz [1] defined a birecurrent (recurrent of the 2nd order) Riemannian manifold by $\nabla^{2} R=R \otimes a$, where R is the Riemannian curvature tensor field, a is a covariant tensor field of order 2 and ∇ is the covariant differential. He proved that if a birecurrent M is compact and the scalar curvature does nowhere vanish it is recurrent in the ordinary sense: $\nabla R=R \otimes \alpha$, where α is a 1 -form on M. W. Roter [2] treated this problem, but it contains some errors.

It is known (Kobayashi-Nomizu [3], p. 305) that an irreducible recurrent Riemannian manifold of dimension n is locally symmetric if $n \geqq 3$ and whether it is irreducible or not, the universal covering manifold \tilde{M} of a connected complete recurrent Riemannian M is either a globally symmetric space or $M=$ $R^{n-2} \times V^{2}$, where R^{n-2} is an ($n-2$)-dimensional flat manifold and V^{2} is a 2 -dimensional Riemannian manifold. The main purpose of this paper is to prove the following theorem.

Theorem. If an irreducible Riemannian manifold M of dimension $n(\geqq 3)$ is birecurrent, then M is recurrent in the ordinary sense.

The case where $n=2$ or M is reducible will be also considered in $\S 3$.

§ 1. Preliminary lemmas.

Although the following discussions are available for Riemannian manifolds of class C^{4}, we suppose the manifolds to be of class C^{∞} for simplicity. 'Differentiable' always means ' C^{∞}-differentiable'. We use the local expression of each tensor field with respect to a local coordinate system (x^{1}, \cdots, x^{n}). The indices run from 1 to n and the summation convention is adopted. The Riemannian metric of M is denoted by g whose components are ($g_{i j}$) or ($g^{i j}$). The components of curvature tensor field R are given by

