Non existence of irreducible birecurrent Riemannian manifold of dimension ≥ 3

By Hidekiyo WAKAKUWA

(Received Oct. 20, 1978) (Revised Feb. 15, 1979)

Introduction.

Formerly, A. Lichnerowicz [1] defined a *birecurrent* (recurrent of the 2nd order) Riemannian manifold by $\nabla^2 R = R \otimes a$, where R is the Riemannian curvature tensor field, a is a covariant tensor field of order 2 and ∇ is the covariant differential. He proved that if a birecurrent M is compact and the scalar curvature does nowhere vanish it is recurrent in the ordinary sense: $\nabla R = R \otimes \alpha$, where α is a 1-form on M. W. Roter [2] treated this problem, but it contains some errors.

It is known (Kobayashi-Nomizu [3], p. 305) that an irreducible recurrent Riemannian manifold of dimension n is locally symmetric if $n \ge 3$ and whether it is irreducible or not, the universal covering manifold \tilde{M} of a connected complete recurrent Riemannian M is either a globally symmetric space or $M = R^{n-2} \times V^2$, where R^{n-2} is an (n-2)-dimensional flat manifold and V^2 is a 2-dimensional Riemannian manifold. The main purpose of this paper is to prove the following theorem.

THEOREM. If an irreducible Riemannian manifold M of dimension $n \geq 3$ is birecurrent, then M is recurrent in the ordinary sense.

The case where n=2 or M is reducible will be also considered in § 3.

§1. Preliminary lemmas.

Although the following discussions are available for Riemannian manifolds of class C^4 , we suppose the manifolds to be of class C^{∞} for simplicity. 'Differentiable' always means ' C^{∞} -differentiable'. We use the local expression of each tensor field with respect to a local coordinate system (x^1, \dots, x^n) . The indices run from 1 to n and the summation convention is adopted. The Riemannian metric of M is denoted by g whose components are (g_{ij}) or (g^{ij}) . The components of curvature tensor field R are given by