On the units of the integral group ring of a dihedral group

By Takehiko Miyata

(Received Nov. 20, 1978)
(Revised Jan. 20, 1979):

0. Introduction.

For G an arbitrary finite group, $Z G$ denotes the integral group ring and $U(Z G)$ its group of units. We denote by ε the augmentation from $Z G$ to Z and by $V(Z G)$ the subgroup of units u of $Z G$ with $\varepsilon(u)=1$; clearly $U(Z G)=V(Z G) \times$ $U(Z)$. In this paper we study $U\left(Z D_{n}\right)$ where D_{n} is a dihedral group of order $2 n$. Throughout this paper we assume that n is an odd integer and all modules are finitely generated left modules. Main results in this paper are the following;

Theorem A. $V\left(Z D_{n}\right)$ is a semi-direct product of a torsion free normal subgroup with D_{n}.

Theorem B. There are $\phi(n) / 2$ conjugate classes in $V\left(Z D_{n}\right)$ of subgroups of $V\left(Z D_{n}\right)$ isomorphic to D_{n} if the order of the locally free class group $C\left(Z D_{n}\right)$ of $Z D_{n}$ is odd. Here ϕ denotes Euler's totient function.

By [3] $D\left(Z D_{n}\right)=0$ if $n<60$. Masley's results in [5] show that values of n satisfying the condition of Theorem B and less than 60 are $3,5,7,9,11,13,15$, $17,19,21,23,25,27,31,33,35,39,45,51,55$ and 57 . It seems to be an interesting problem to delete the condition on $C\left(Z D_{n}\right)$ in Theorem B.

Let D_{n} be generated by σ and τ with relations $\sigma^{n}=\tau^{2}=1$ and $\tau^{-1} \sigma \tau=\sigma^{-1}$. Set $S=Z D_{n} /\left(1+\sigma+\sigma^{2}+\cdots+\sigma^{n-1}\right)$. The key point in proving Theorems A and B is that the order S behaves like a hereditary order as far as locally S-modules concern. For example the locally free class group of S is isomorphic to that of the center of S. For other applications of this property of S, see [6].

For $n=3$ complete results are obtained by Hughes and Pearson [4]. Further information on $V\left(Z D_{3}\right)$ and especially on the torsion free normal subgroup in Theorem A is found in the excellent survey article on the unit group of rings by Dennis [2].

Recently K. Sekiguchi (Tokyo Metropolitan University) has extended Theorem A to a metabelian group G such that the exponent of G / G^{\prime} is $1,2,3$, 4 or 6 , where G^{\prime} denotes the commutator subgroup of G.

