Approximation problem restricted by an incidence matrix

By Ryozi Sakai

(Received Oct. 30, 1978)

§ 0. Introduction.

 $e=\left\{(i, j) ; e_{i j}=1\right\}$ and $|e|=\Sigma e_{i j}$. In this paper we consider both the "algebraic case" and the "trigonometric case", simultaneously. Thus, through this paper we assume that $s=\max \{j ;(i, j) \in e\}$ and that

$$
\bar{e}=\left\{\begin{array}{l}
|e|-1 \quad \text { in the algebraic case }, \\
{[(|e|-1) / 2] \quad \text { in the trigonometric case },}
\end{array}\right.
$$

where $[x]$ is the largest integer such that $[x] \leqq x$. Let Π_{n} denote the algebraic or trigonometric polynomials of degree n or less. Let A denote an interval $[0,1]$ or unit circle $K=[-\pi, \pi)$. Given k distinct points $x_{1}, \cdots, x_{k} \in A$ and a polynomial $P \in \Pi_{\bar{c}}$. If $P^{(j)}\left(x_{i}\right)=0$ for ($\left.i, j\right) \in e$ implies $P=0$, we said that the scheme $S=\left(E ;\left\{x_{i}\right\}\right)$ is poised. If the scheme S is poised for all choices of nodes $\left\{x_{i}\right\}, E$ is called a poised matrix. In the algebraic case, a wide class of poised matrices has been found. In order to mention them, we need several definitions. Given an incidence matrix E, we define

$$
m_{j}=\sum_{i=1}^{k} e_{i j} \quad \text { and } \quad M_{p}=\sum_{j=0}^{p} m_{j}, \quad j, p=0, \cdots, s
$$

An incidence matrix E is said to satisfy the Pólya conditions if

$$
\begin{equation*}
M_{p} \geqq p+1, \quad p=0, \cdots, s . \tag{0.1}
\end{equation*}
$$

A sequence of 1 's in a row of E;

$$
\begin{equation*}
e_{i j}=e_{i j+1}=\cdots=e_{i j+r-1}=1, \tag{0.2}
\end{equation*}
$$

is called a block if its length r is maximum. A block is even or odd according as its length r is even or odd. A block (0.2) is called a Hermite block if $j=0$.

Theorem 0.1. (Ferguson [1], Atkinson and Sharma [2]) In the algebraic polynomial class $\Pi_{\bar{e}}$, an incidence matrix satisfying (0.1) is poised if its interior rows contain no odd blocks of non Hermite data.

