Approximation problem restricted by an incidence matrix

By Ryozi SAKAI

(Received Oct. 30, 1978)

§0. Introduction.

A matrix $E=(e_{ij})_{j=0,\dots,s}^{i=1,\dots,k}$ is called an incidence matrix if $e_{ij}=0$ or 1. Let $e=\{(i, j); e_{ij}=1\}$ and $|e|=\sum e_{ij}$. In this paper we consider both the "algebraic case" and the "trigonometric case", simultaneously. Thus, through this paper we assume that $s=\max\{j; (i, j)\in e\}$ and that

$$\bar{e} = \begin{cases} |e|-1 & \text{in the algebraic case,} \\ [(|e|-1)/2] & \text{in the trigonometric case,} \end{cases}$$

where [x] is the largest integer such that $[x] \leq x$. Let Π_n denote the algebraic or trigonometric polynomials of degree n or less. Let A denote an interval [0, 1] or unit circle $K=[-\pi, \pi)$. Given k distinct points $x_1, \dots, x_k \in A$ and a polynomial $P \in \Pi_{\bar{e}}$. If $P^{(j)}(x_i)=0$ for $(i, j) \in e$ implies P=0, we said that the scheme $S=(E; \{x_i\})$ is poised. If the scheme S is poised for all choices of nodes $\{x_i\}$, E is called a poised matrix. In the algebraic case, a wide class of poised matrices has been found. In order to mention them, we need several definitions. Given an incidence matrix E, we define

$$m_j = \sum_{i=1}^{k} e_{ij}$$
 and $M_p = \sum_{j=0}^{p} m_j$, $j, p = 0, \dots, s$.

An incidence matrix E is said to satisfy the Pólya conditions if

$$(0.1) M_p \ge p+1, p=0, \cdots, s.$$

A sequence of 1's in a row of E;

$$(0.2) e_{ij} = e_{ij+1} = \cdots = e_{ij+r-1} = 1,$$

is called a block if its length r is maximum. A block is even or odd according as its length r is even or odd. A block (0.2) is called a Hermite block if j=0.

THEOREM 0.1. (Ferguson [1], Atkinson and Sharma [2]) In the algebraic polynomial class $\Pi_{\bar{e}}$, an incidence matrix satisfying (0.1) is poised if its interior rows contain no odd blocks of non Hermite data.