Global and local equivariant characteristic numbers of G-manifolds

By Katsuo KAWAKUBO

(Received June 29, 1978)

§1. Introduction and statement of results.

Let G be a compact Lie group and $h_G()$ be an equivariant multiplicative cohomology theory. Let M and N be closed G-manifolds of class C^3 . Then for a G-map $f: M \rightarrow N$, we defined an "equivariant Gysin homomorphism"

 $f_1: h_G(M) \longrightarrow h_G(N)$

under certain conditions and obtained equivariant Riemann-Roch type theorems in general [13], [14]. When N is a point, f_1 is called an "index homomorphism" and is denoted by Ind. On the other hand, we got a localization theorem. Consequently by virtue of the functorial property of our equivariant Gysin homomorphism, we have many equations between invariants of a *G*-manifold and fixed point data.

In the present paper, we shall confine ourselves to two special cases. Let $G \rightarrow EG \rightarrow BG$ be the universal principal G-bundle.

Case 1. $G=T^n$ (torus), $h_G(M)=H^*(EG \underset{G}{\times} M:R)$ where R is the real num-

ber field, manifolds are oriented G-manifolds of class C^3 .

Case 2. $G=(Z_2)^n$, $h_G(M)=H^*(EG \underset{G}{\times} M; Z_2)$, manifolds are non oriented G-manifolds of class C^3 ,

The greater part of the results in Case 1 will be those in [12]. The results in Case 2 will be analogous to those in Case 1 and include the main theorems of [17], [18].

First we shall show that our f_1 has the functorial property and is an $h_G(*)$ -module homomorphism where * stands for a point. Now we consider the set $S \subset h_G(*)$ of Euler classes of the vector bundles $EG \underset{\phi}{\times} R^m \rightarrow BG$ where G acts on R^m by representations $\phi: G \rightarrow O(m)$ without trivial direct summand. Then S is a multiplicative set of $h_G(*)$. It follows that we get a localization $S^{-1}h_G(M)$ and an induced homomorphism

Research supported in part by Fūjukai grant.