Free group actions of $Z_{p, q} \times Z_{h}$ on homotopy spheres

By Yoshinobu Kamishima

(Received March 2, 1978)

Introduction.

Let $Z_{p, q}$ be the metacyclic group with presentation

$$
\left\{x, y \mid x^{p}=y^{q}=1, y x y^{-1}=x^{\sigma}\right\},
$$

where p is an odd integer, q an odd prime, $(\sigma-1, p)=1$, and σ is a primitive $q^{\text {th }}$ root of $1 \bmod p$. Denote by Θ_{n} the group of homotopy spheres, and by $\Theta_{n}(\partial \pi)$ the group of homotopy spheres which bound parallelizable manifolds. Then Petrie [5] proved that for each $\Sigma \in \Theta_{2 q-1}(\partial \pi)$ there is a free smooth action of $Z_{p, q}$ on Σ. This theorem will be generalized as follows in this paper.

Theorem. Let Z_{h} denote a cyclic group of order h and assume $h=2^{n} h^{\prime}$, $\left(2, h^{\prime}\right)=1$. If n takes 0,1 , or 2 and $\left(h^{\prime}, p q\right)=1$, then for each $\Sigma \in \Theta_{2 q-1}(\partial \pi)$ there is a free smooth action $Z_{p, q} \times Z_{h}$ on Σ.

Our theorem follows immediately from the following two propositions.
Proposition 5.7. There exists a free smooth action of $Z_{p, q} \times Z_{h}$ on some homotopy sphere $\Sigma \in \Theta_{2 q-1}(\partial \pi)$. Here ($h, p q$) $=1$.

Proposition 6.1. Let m be any integer $\geqq 1$. Assume $h=2^{n} h^{\prime}$ where $n=0,1$, or 2 and $\left(h^{\prime}, p q\right)=1$. If $\Sigma \in \Theta_{4 m+1}$ admits a free $Z_{p, q} \times Z_{h}$-action, then $\Sigma \# \Sigma_{0}$ admits a free $Z_{p, q} \times Z_{h}$-action, where Σ_{0} generates $\Theta_{4 m+1}(\partial \pi)$.

Our methods are analogous to those in Petrie [5]. §§ 1-4 are preliminaries for Proposition 5.7 which is proved in $\S 5$. In $\S 6$, we prove Proposition 6.1 by applying a theorem of Browder [1].

I would like to thank Professor Y. Kitada, Professor H. Suzuki and Professor M. Nakaoka for their useful suggestions and criticism.

1. Construction of a $Z_{p, q} \times Z_{h}$-action.

We set $\pi=Z_{p, q} \times Z_{h}$ for the groups $Z_{p, q}$ and Z_{h} in Introduction, where ($h, p q$)=1. We denote by π_{p}, π_{q} the cyclic subgroups generated by x, y respectively. Let $Z_{p h}$ be a cyclic group of order $p h$. Since $(p, h)=1$, there exist integers m and n such that $m p+n h=1$, and an isomorphism of $Z_{p n}$ to

