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0. Introduction.

In this paper, we define characteristic classes for conformal and projective
foliations and investigate the relationship of them with those for smooth
foliations defined by Bott and Haefliger [4] and those for Riemannian foliations
due to Lazarov and Pasternack [16] and Kamber and Tondeur [12] (see also
[18]). For a construction of the characteristic classes of smooth foliations
[2], Bott’s vanishing theorem [1] concerning the Pontrjagin classes of the
normal bundles played an important role. Also Pasternack’s vanishing theorem
for the Riemannian foliations [25] was the starting point of Lazarov-Paster-
nack theory. Similarly our motivation for the present work was the strong
vanishing theorem of Nishikawa and Sato [22], which states that the ring
generated by the Pontrjagin classes of the normal bundle of a conformal or
projective foliation is trivial for cohomology degree $>codimension$ . However
we do not use this theorem in our construction. Instead, we follow the
Bott-Haefliger approach [4] to the characteristic classes of smooth foliations
(namely, \‘a la Gelfand-Fuks theory–see [3]), and also the method of Kamber
and Tondeur used in their theory of characteristic classes for foliated bundles
[12] [13]. Thus just as the cohomology of some truncated Weil algebra of
$\mathfrak{g}\mathfrak{l}(n;R)$ or $\mathfrak{s}\mathfrak{o}(n)$ played the role of characteristic classes for smooth or
Riemannian foliations, our characteristic classes also take the form of the
cohomology of certain truncated Weil algebra of $\mathfrak{s}o(n+1,1)$ for the conformal
case and of $e\wedge\downarrow(n+1;R)$ for the projective case, where $\mathfrak{g}\mathfrak{l}(n;R),$ $\mathfrak{s}o(n),$ @o(n+l, 1)
and $e\wedge\downarrow(n+1;R)$ are the Lie algebras of $GL(n;R),$ $SO(n),$ $SO(n+1,1)$ and
$PGL(njR)$ respectively. The main point of our construction is the use of
Cartan connection, by which we have also shown that there are other charac-
teristic classes for Riemannian foliations which are not covered by Lazarov-
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