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\S 0. Introduction.

In this paper we consider the nonlinear evolution equation of the form

(E) $du(t)/dt+\partial\phi^{t}(u(t))\ni f(t)$ $0\leqq t\leqq T$ ,

in a real Hilbert space $H$. Here, for almost every $t\in[0, T],$ $\partial\phi^{t}$ is the sub-
differential of a lower semicontinuous convex function $\phi^{t}$ from $H$ into
$]-\infty,$ $\infty$] $(\phi^{t}\not\equiv+\infty)$ .

Since Br\’ezis [2] first treated the equation (E) in the case $\phi^{t}=\phi$ is inde-
pendent of $t$ , many authors have investigated the existence, uniqueness and
regularity of solutions of (E). (See Attouch and Damlamian [1], Kenmochi
[5], Maruo [6], Watanabe [8], Yamada [10], [11], etc.)

This paper establishes an existence, uniqueness theorem for strong solu-
tions of (E) under relatively weak assumptions on the t-dependence of $\phi^{t}$

generalizing the results of [1], [5], [6], [8], [10] and [11]. We employ the
method of Kenmochi [5], that is, we would like to approximate (E) by differ-
ence approximations with respect to the time. We also use the idea of
Maruo [6] under these hypotheses to establish estimates for solutions of the
approximation schemes. The main advance over $[10, 11]$ is the relaxation‘ of
a hypothesis on the t-dependence of the $\phi^{t}$ from absolute continuity to bounded
variation.

The contents of this paper are as follows. \S 1 recalls the basic properties
of a lower semicontinuous convex function $\phi$ . In \S 2 we list the basic hypo-
theses and state the existence theorem for (E). \S 3-7 comprise the proof of
the theorem. \S 3 shows the measurability of $\phi(v(\cdot))$ for any strongly meas-
urable function $v$ . In \S 4 we prepare some lemmas which Play important roles
in \S 5. In \S 5 we drive recursive inequalities for solutions of the approxima-
tion schemes and establish estimates for them. In \S 6 we prove that the
approximate solutions converge as the mesh of the partitions aPproaches zero.
Then we get the local existence of the strong solution. In \S 7 we prove the
global existence of it.
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