Abstract aspects of asymptotic analysis

By Atsushi Yoshikawa

(Received Dec. 3, 1977)

Introduction

In the present paper we offer a formal treatment of some simplest classes of the asymptotic methods. Our result is summarized in Theorem 4.5 below. It tells when a given element admits an asymptotic expansion, and also shows the canonical way to derive its expansion.

In many branches of mathematics, various asymptotic methods provide powerful tools, often exhibiting a strong resemblance. This leads one to a suspicion that there be a common structure in these methods of analysis. For instance, in many classes of asymptotic analysis, an asymptotic expansion is just one into homogeneous parts, as a formal series expansion. Thus, for such classes, a speculation may be done that there be an action of the multiplicative group R_+ of positive real numbers. We actually observe such R_+ actions exist in several standard examples as discussed in §7.

We thus begin by introducing the notion of a differentiable R_+ -action G in a multiplicatively convex Fréchet algebra A (see § 1). However, most formal constructions below will be carried out without referring to the algebra structure of A. The assumption of A being an algebra is mainly to reflect some important cases. The differentiable R_{+} -action in A leads us to define a scale $\{B^{\rho}; \rho \in \mathbb{R}\}$ of Fréchet spaces, and the spaces $\Gamma^{\mu}, \mu \in \mathbb{C}$, of G-homogeneous elements (see § 2). We then construct the analogues of the spaces of formal series, C^{μ} , from Γ^{μ} 's. We can thus introduce the notions of developable elements and their developments, as generalizations of elements admitting asymptotic expansions and their expansions. The spaces D^{μ} of developable elements are shown to be Fréchet spaces. The mappings α^{μ} , assigning to each element in D^{μ} its development in C^{μ} , are then continuous (see § 3). Sufficient conditions on surjectivity of α^{μ} will be discussed in § 5. Of course, in such a general situation, α^{μ} are not necessarily surjective (see Example 7.5). The spaces D^{μ} are characterized in terms of the boundary behavior of the differentiable R_+ -action. This permits us to write down the mappings α^{μ} as a variant of the Taylor expansion (see § 4, Theorem 4.5 in particular). We supplement in § 6 the cases when A is a Fréchet Montel space.