On the bifurcation of the multiplicity and topology of the Newton boundary

By Mutsuo OKA*

(Received Aug. 16, 1977) (Revised Sept. 13, 1978)

0. Introduction.

In [3], A.G. Kouchnirenko presented a beautiful formula about the multiplicity of an isolated singularity of a hypersurfaces $V=f^{-1}(0)$ in C^n where f(z) is assumed to have a non-degenerate Newton principal part. It states that the multiplicity of V at the origin (=the Milnor number) is equal to the Newton number of $\Gamma_{-}(f)$ (and thus is independent of a particular choice of the coefficients of f(z)).

The purpose of this paper is to give a geometrical proof of Kouchnirenko's Theorem from the viewpoint of the bifurcation of the multiplicity. First we prove that the Milnor fibration of f(z) is determined by the Newton boundary $\Gamma(f)$ if the Newton principal part of f is non-degenerate (Theorem 2.1).

For the calculation of the multiplicity, we consider the bifurcating equation :

$$z_1 \frac{\partial f}{\partial z_1} - t\gamma_1 = \cdots = z_n \frac{\partial f}{\partial z_n} - t\gamma_n = 0.$$

If $\gamma = (\gamma_1, \dots, \gamma_n)$ is generic and t is sufficiently small, the bifurcating solutions of the above equation are all simple and one finds exactly n! volume $\Gamma_{-}(f)$ solutions $(t \neq 0)$ (Theorem 4.2).

1. Milnor fibration.

Let $f(z_1, z_2, \dots, z_n)$ be an analytic function in an open neighbourhood Uof C^n (f(0)=0) and assume that f(z) has an isolated critical point at the origin. We can take a positive number ε so that the sphere $S(r) = \{z \in C^n; \|z\|^2 = |z_1|^2 + \dots + |z_n|^2 = r^2\}$ cuts the hypersurface $V_0 = f^{-1}(0)$ transversely for any $0 < r \le \varepsilon$. (Therefore $V_0 \cap S(r)$ is a smooth manifold.) Fixing such an ε , we can take $\delta > 0$ such that $V_\eta = f^{-1}(\eta)$ is non-singular in $D(\varepsilon)$ and is transverse to $S(\varepsilon)$ for $0 < |\eta| \le \delta$ where $D(\varepsilon) = \{z \in C^n; \|z\| \le \varepsilon\}$. Then we have a so-called Milnor

^{*} Partially supported by the Sakkokai Foundation.