On relations between conformal mappings and isomorphisms of spaces of analytic functions on Riemann surfaces

By Yasushi MIYAHARA

(Received Dec. 2, 1977)

§1. Introduction.

Let \mathfrak{S} be the set consisting of all compact bordered Riemann surfaces. For \overline{S} in \mathfrak{S} , we denote its interior and its border by S and ∂S , respectively. Let $p (\geq 0)$ be the genus of \overline{S} and $q (\geq 1)$ be the number of boundary components of \overline{S} . We set

$$N = 2p + q - 1$$
.

Furthermore we denote by A(S) the set of all functions which are analytic in S and continuous on \overline{S} . It forms a Banach algebra with the supremum norm

$$||f|| = \sup_{z \in S} |f(z)|.$$

For \overline{S} and $\overline{S'}$ in \mathfrak{S} , let L(A(S), A(S')) denote the set of all continuous invertible linear mappings of A(S) onto A(S'). It is shown by Rochberg [4] that L(A(S), A(S')) is nonvoid if S and S' are homeomorphic. We set

 $c(T) = ||T|| ||T^{-1}||$

for T in L(A(S), A(S')). We have always

 $c(T) \geq 1$,

and we can easily see that T/||T|| is an isometry if and only if c(T)=1. If T1=1, then

$$1 \leq ||T|| \leq c(T)$$
, $1 \leq ||T^{-1}|| \leq c(T)$.

Let z and z' be points of S and S', respectively. If there exist a positive number ε and an element T of L(A(S), A(S')) such that

$$|f(z) - (Tf)(z')| \leq \varepsilon \min(||f||, ||Tf||)$$

for all f in A(S), then we say that z and z' are ε -related with respect to T, or z and z' satisfy an ε -relation with respect to T.

The purpose of the present paper is to prove the following theorems: