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Introduction.

The Purpose of this paper is to prove the following theorem.
THEOREM. Let $d$ be a Prime number such that $d=2$ or $d\equiv-1$ mod 12, and

$k$ be an imaginary quadratic field with the discriminant $-d$ . SuPpose that the
class number of $k$ is prime to 3. Let $E$ be an elliptic curve defined over $k$ . Then,
there exists a prime ideal of $k$ at which $E$ does not have good reduction.

Note that the assumptions of the Theorem imply that the class number of
$k$ is prime to 6 and $(\frac{-d}{3})=1$ where $(-)$ denotes the Legendre symbol.

To prove the Theorem, we shall study the k-rational points of order 3 on
elliptic curves with everywhere good reduction defined over $k$ . To state our
method more explicitly, let $k$ be an arbitrary algebraic number field, $\mathfrak{o}_{k}$ the
maximal order of $k$ . Let $E$ be an elliptic curve with everywhere good reduc-
tion defined over $k,$ $\mathcal{E}$ the Neron model of $E$ over $X=Speco_{k}$ , and $p\mathcal{E}$ the
kernel of the $P$-multiplication on $\mathcal{E}$ . In \S 1-2, following Mazur [6], we obtain
an estimate of the free rank of the Mordell-Weil group of $E$ in terms of the
rank of $0_{k}^{\times}$ under an assumption on the divisibility of $p\mathcal{E}$ by $\mu_{p}$ or $Z/pz$, where
$p\mathcal{E}$ is considered as a finite flat group scheme over X. (See Proposition 4). As
an application of this proposition, we shall show that $E$ has no k-rational point
of order 3 under the assumptions of the Theorem (see Lemma 3). On the other
hand, we can show that such an elliptic curve has a k-rational point of order
3 in the last section, by studying the ramification of the extensions over $k$

generated by the coordinates of the points of order 3 (see Proposition 6,
Lemma 4, 5).

The author wishes to express his hearty thanks to Dr. H. Yoshida for his
valuable suggestions.

\S 1. Let $k$ be an algebraic number field of finite degree, and $h_{k}$ the class
number of $k$ in the narrow sense. Let $X=Spec0_{k}$ , and $H^{i}(X, )$ denote the i-th
cohomology group for the $f$ . $p.p$ . $f$ . topology over $X$ (cf. [2] Expose IV).


