Finite groups with trivial class groups

By Shizuo Endo and Yumiko Hironaka

(Received July 14, 1977)

Let A be a finite dimensional semisimple \boldsymbol{Q}-algebra and let Λ be a \boldsymbol{Z}-order in A. We mean by the class group of Λ the class group defined by using locally free left Λ-modules and denote it by $C(\Lambda)$. Let Ω be a maximal Z-order in A containing Λ. We define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \rightarrow C(\Omega)$ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let G be a finite group and let $\boldsymbol{Z} G$ be the integral group ring of G. Then $\boldsymbol{Z} G$ can be regarded as a \boldsymbol{Z}-order in the semisimple \boldsymbol{Q}-algebra $\boldsymbol{Q} G$.

In this paper we will try to determine all finite groups G for which $d(\boldsymbol{Z} G)=1$.

Let $C_{n}(n \geqq 1)$ denote the cyclic group of order n and let $D_{n}(n \geqq 2)$ denote the dihedral group of order $2 n$. Let S_{n}, A_{n} denote the symmetric, alternating group on n symbols, respectively.
P. Cassou-Noguès [1] showed that, for a finite abelian group $G, d(\boldsymbol{Z} G)=1$ if and only if $G \cong C_{1}, C_{p}$ (p any prime), $C_{4}, C_{6}, C_{8}, C_{9}, C_{10}, C_{14}$ or $C_{2} \times C_{2}$. Hence we have only to treat the nonabelian case.

Our main result is the following:
Theorem. A finite nonabelian group G for which $d(\boldsymbol{Z} G)=1$ is isomorphic to one of the groups: $D_{n}(n \geqq 3), A_{4}, S_{4}, A_{5}$.

It is well known (e.g. [14]) that $d\left(\boldsymbol{Z} A_{4}\right)=d\left(\boldsymbol{Z} S_{4}\right)=d\left(\boldsymbol{Z} A_{5}\right)=1$. It is also known that $d\left(\boldsymbol{Z} D_{n}\right)=1$ in each of the following cases: (i) n is an odd prime ([9]); (ii) n is a power of an odd regular prime ([7]); or (iii) n is a power of 2 ([4]). Recently Cassou-Noguès [2] showed that there is an infinite number of pairs (p, q) of distinct odd primes p, q such that $d\left(\boldsymbol{Z} D_{p q}\right)>1$. It seems difficult to determine all integers n for which $d\left(\boldsymbol{Z} D_{n}\right)=1$.

§ 1. The group $T(\boldsymbol{Z} G)$.

Let G be a finite group and let (Σ) be the ideal of $Z G$ generated by $\Sigma=\sum_{\sigma \in \boldsymbol{G}} \sigma$. We define the subgroup $T(\boldsymbol{Z} G)$ of $D(\boldsymbol{Z} G)$ to be the kernel of the natural surjection $D(\boldsymbol{Z} G) \rightarrow D(\boldsymbol{Z} G /(\boldsymbol{\Sigma}))$ and $t(\boldsymbol{Z} G)$ to be the order of $T(\boldsymbol{Z} G)$

