Finite groups with trivial class groups

By Shizuo ENDO and Yumiko HIRONAKA

(Received July 14, 1977)

Let A be a finite dimensional semisimple Q-algebra and let Λ be a Z-order in A. We mean by the class group of Λ the class group defined by using locally free left Λ -modules and denote it by $C(\Lambda)$. Let Ω be a maximal Z-order in A containing Λ . We define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \rightarrow C(\Omega)$ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let G be a finite group and let ZG be the integral group ring of G. Then ZG can be regarded as a Z-order in the semisimple Q-algebra QG.

In this paper we will try to determine all finite groups G for which $d(\mathbb{Z}G)=1$.

Let C_n $(n \ge 1)$ denote the cyclic group of order n and let D_n $(n \ge 2)$ denote the dihedral group of order 2n. Let S_n , A_n denote the symmetric, alternating group on n symbols, respectively.

P. Cassou-Noguès [1] showed that, for a finite abelian group G, $d(\mathbb{Z}G)=1$ if and only if $G \cong C_1$, C_p (p any prime), C_4 , C_6 , C_8 , C_9 , C_{10} , C_{14} or $C_2 \times C_2$. Hence we have only to treat the nonabelian case.

Our main result is the following :

THEOREM. A finite nonabelian group G for which $d(\mathbb{Z}G)=1$ is isomorphic to one of the groups: D_n $(n\geq 3)$, A_4 , S_4 , A_5 .

It is well known (e.g. [14]) that $d(\mathbb{Z}A_4)=d(\mathbb{Z}S_4)=d(\mathbb{Z}A_5)=1$. It is also known that $d(\mathbb{Z}D_n)=1$ in each of the following cases: (i) *n* is an odd prime ([9]); (ii) *n* is a power of an odd regular prime ([7]); or (iii) *n* is a power of 2 ([4]). Recently Cassou-Noguès [2] showed that there is an infinite number of pairs (p, q) of distinct odd primes p, q such that $d(\mathbb{Z}D_{pq})>1$. It seems difficult to determine all integers *n* for which $d(\mathbb{Z}D_n)=1$.

§1. The group $T(\mathbf{Z}G)$.

Let G be a finite group and let (Σ) be the ideal of ZG generated by $\Sigma = \sum_{\sigma \in G} \sigma$. We define the subgroup T(ZG) of D(ZG) to be the kernel of the natural surjection $D(ZG) \rightarrow D(ZG/(\Sigma))$ and t(ZG) to be the order of T(ZG)