On the values at rational integers of the p-adic Dirichlet L functions

By Kazuyuki HATADA

(Received July 24, 1976) (Revised July 28, 1977)

Introduction.

Let χ be a primitive Dirichlet character with conductor f_{χ} , and $L(s,\chi)$ be the Dirichlet L series associated with χ . For any prime number p, we denote by $L_p(s,\chi)$ the p-adic L function introduced by Kubota and Leopoldt [1]. We fix an embedding ι of the algebraic closure $\bar{Q}(\subset C)$ into \bar{Q}_p once for all. By this ι , we identify any formal power series $\sum_{n=0}^{\infty} a_n X^n \in \bar{Q}[[\chi]] \subset C[[\chi]]$ (resp. any number $a \in \bar{Q}$) with $\sum_{n=0}^{\infty} \iota(a_n) X^n \in \bar{Q}_p[[\chi]]$ (resp. $\iota(a) \in \bar{Q}_p$). We assume that all the Dirichlet characters we consider are primitive.

In this paper, firstly, we present a formula for the values of $L_p(s,\chi)$ at positive integers. To simplify the description of the main result, we assume that p is an odd prime number (for the case of p=2, see Theorem A of this paper) and that f_{χ} is neither 1 nor p. For a fixed prime number p, let ω be the Dirichlet character defined by $\omega(x) \equiv x \mod p$ for $x \in \mathbb{Z}$. We set $\chi_j = \chi \cdot \omega^{-j}$ and

$$B(X, j) = \frac{\tau(\chi_{j})}{f_{\chi_{j}}} \sum_{m=1}^{f_{\chi_{j}}} \bar{\chi}_{j}(m) \log \left(1 + \frac{X}{1 - \exp(2\pi\sqrt{-1} \ m/f_{\chi_{j}})}\right) \in \bar{\mathbf{Q}}_{p}[[X]],$$

$$\left(\text{viz. } \frac{\tau(\chi_{j})}{f_{\chi_{j}}} \sum_{m=1}^{f_{\chi_{j}}} \bar{\chi}_{j}(m) \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} \left(\frac{X}{1 - \exp(2\pi\sqrt{-1} \ m/f_{\chi_{j}})}\right)^{k}\right)$$
for $j = 0, 1, 2, \dots, p-2$,

where f_{χ_j} and $\tau(\chi_j)$ denote the conductor of χ_j and the Gaussian sum of $\chi_j \Big(= \sum_{t=1}^{f_{\chi_j}} \chi_j(t) \exp{(2\pi \sqrt{-1} t/f_{\chi_j})} \Big)$ respectively. Further we denote by S the formal integral operator acting on a certain subspace Q_K of formal power series with coefficients in a finite extesion field K of Q_p , given by