Convolution powers of singular-symmetric measures

By Keiji IZUCHI

(Received Jan. 17, 1976) (Revised May 24, 1977)

1. Introduction.

Let G be a L.C.A. group and \hat{G} be its dual group. Let M(G) be the measure algebra on G and $L^1(G)$ be the group algebra on G. In [7], Taylor showed that: There are a compact topological abelian semigroup S and an isometric isomorphism θ of M(G) into M(S) such that;

- (a) $\theta(M(G))$ is a weak-*dense subalgebra of M(S);
- (b) \hat{S} , the set of all continuous semicharacters on S, separates the points of S;
- (c) for $f \in \hat{S}$, $\mu \to \int_{s} f d\theta \mu$ ($\mu \in M(G)$) is a non-zero complex homomorphism of M(G);
- (d) for a non-zero complex homomorphism F of M(G), there is an $f \in \hat{S}$ such that $F(\mu) = \int_{s} f d\theta \mu$ for $\mu \in M(G)$.

We can consider that \hat{S} is the maximal ideal space of M(G), $\hat{G} \subset \hat{S}$, and the Gelfand transform of $\mu \in M(G)$ is given by $\hat{\mu}(f) = \int_{s} f d\theta \mu$ $(f \in \hat{S})$. A closed subspace (ideal, subalgebra) $N \subset M(G)$ is called an L-subspace (L-ideal, L-subalgebra) if $L^{1}(\mu) \subset N$ for every $\mu \in N$, where $L^{1}(\mu) = \{\lambda \in M(G); \lambda \text{ is absolutely continuous with respect to <math>\mu$ $(\lambda \ll \mu)\}$. We denote by Rad $L^{1}(G)$ the radical of $L^{1}(G)$ in M(G), that is, Rad $L^{1}(G) = \{\mu \in M(G); \hat{\mu}(f) = 0, \text{ for all } f \in \hat{S} \setminus \hat{G}\}$. We put $\mathfrak{L}(G) = \sum_{\tau} \operatorname{Rad} L^{1}(G_{\tau})$, where τ runs through over L. C. A. group topologies on G which are stronger than the original one. Then $\mathfrak{L}(G) \subset M(G)$ and $\mathfrak{L}(G)$ is an L-subalgebra ([2]). For $\mu \in M(G)$, we put $\mu^{*}(E) = \overline{\mu(-E)}$ for every Borel subset E of G. We denote by \mathfrak{M} the set of all symmetric measures of M(G), that is, $\mathfrak{M} = \{\mu \in M(G); \hat{\mu}^{*}(f) = \overline{\mu(f)} \text{ for every } f \in \hat{S}\}$. Then it is easy to show that $\mathfrak{L}(G) \subset \mathfrak{M}$. A measure $\mu \in \mathfrak{M}$ is called singular-symmetric if μ is singular with