L^{p} -spaces and maximal unbounded Hilbert algebras

By Atsushi INOUE

(Received Dec. 9, 1976)

§ 0. Introduction.

Inductive and projective limits of the L^p -spaces with respect to a Hilbert algebra are studied. By using their spaces we give necessary and sufficient conditions under which a maximal unbounded Hilbert algebra defined in [11] is pure.

In this paper \mathcal{D}_0 denotes a Hilbert algebra, \mathfrak{h} the completion of \mathcal{D}_0 , $\mathcal{U}_0(\mathcal{D}_0)$ the left von Neumann algebra of \mathcal{D}_0 , ϕ_0 the natural trace on $\mathcal{U}_0(\mathcal{D}_0)^+$ and π_0 the left regular representation of \mathfrak{h} .

In [11~12], we have studied unbounded Hilbert algebra which is a generalization of the notion of Hilbert algebra to unbounded case. Let $L^p(\phi_0)$ be the L^p -space with respect to ϕ_0 and let $||T||_p$ be the L^p -norm of $T \in L^p(\phi_0)$. The space $L_2^{\omega}(\mathcal{D}_0)$ defined by:

 $L_2^{\omega}(\mathcal{D}_0) = \bigcap_{2 \le p < \infty} L_2^p(\mathcal{D}_0) \qquad (\text{where} \quad L_2^p(\mathcal{D}_0) := \{x \in \mathfrak{h} ; \, \overline{\pi_0(x)} \in L^p(\phi_0)\})$

is maximal among unbounded Hilbert algebras containing \mathcal{D}_0 and it plays an important role for our study of unbounded Hilbert algebras.

In this paper we shall investigate the space $L_2^{\omega}(\mathcal{D}_0)$ by using the L_2^p -spaces and inductive, projective limits of L_2^p -spaces.

Under the norm $||x||_{(2,p)} := \max(||x||_2, ||x||_p)$ (where $||x||_p := ||\overline{\pi_0(x)}||_p$), $L_2^p(\mathcal{D}_0)$ is a Banach space. Furthermore,

$$\mathfrak{h} \supset L_2^p(\mathcal{D}_0) \supset L_2^q(\mathcal{D}_0) \supset L_2^\omega(\mathcal{D}_0) \supset L_2^\infty(\mathcal{D}_0) \quad (2$$

We define

$$L_{2}^{p-}(\mathcal{D}_{0}) = \bigcap_{2 \leq t < p} L_{2}^{t}(\mathcal{D}_{0}) \quad (2 < p \leq \infty),$$
$$L_{2}^{p+}(\mathcal{D}_{0}) = \bigcup_{t > p} L_{2}^{t}(\mathcal{D}_{0}) \quad (2 \leq p < \infty)$$

and give $L_2^{p-}(\mathcal{D}_0)$ (resp. $L_2^{p+}(\mathcal{D}_0)$) the projective limit topology τ_2^{p-} (resp. the inductive limit topology τ_2^{p+}) for the Banach spaces $(L_2^t(\mathcal{D}_0); \| \|_{(2,t)})$. Then it is proved that $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is a Fréchet space, $L_2^{\infty-}(\mathcal{D}_0) = L_2^{\omega}(\mathcal{D}_0)$ and $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is a separated barrelled space.