On the fundamental group of the complement of certain plane curves

By Mutsuo OkA

(Received March 2, 1976)
(Revised Feb. 6, 1978)

§ 0. Notations.

Throughout this paper, we use the following notations.
Z : the integers or an infinite cyclic group
$\left(n_{1}, n_{2}, \cdots, n_{k}\right)$: the greatest common divisor of $n_{1}, n_{2}, \cdots, n_{k}$
G, G_{1}, G_{2} : groups
$Z(G)$: the center of G
$D(G)$: the commutator group of G
$G_{1} * G_{2}, G_{1} * G_{2} * G$: the free product of G_{1} and G_{2} or of G_{1}, G_{2} and G respectively
\boldsymbol{Z}_{p} : a cyclic group of order p
$F(p)$: a free group of rank p
$\{e\}$: the trivial group
e : the unit element
$\left.\begin{array}{l}G(p ; q) \\ G(p ; q ; r)\end{array}\right\}:$ special groups. See the definitions in $\S 2$.

§ 1. Introduction and statement of results.

Let C be an irreducible curve in the projective space \boldsymbol{P}^{2} and let G be the fundamental group of the complement of C. So far known, we have only two cases: (I) G is infinite and the commutator group $D(G)$ is a free group of a finite rank (Zariski [8]; Oka [6]). (II) G is a finite group (Zariski [8]).

We do not know whether this is true or not in general. The purpose of this paper is to give a theorem which says that, for a certain case, we have only the case (I). Namely let

$$
\begin{equation*}
C: \prod_{j=1}^{l}\left(Y-\beta_{j} Z\right)^{\nu j}-\prod_{i=1}^{m}\left(X-\alpha_{i} Z\right)^{\lambda_{i}}=0 \tag{1.1}
\end{equation*}
$$

where X, Y and Z are homogenous coordinates of \boldsymbol{P}^{2} and

