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\S 0. Notations.

Throughout this paper, we use the following notations.
$Z$ : the integers or an infinite cyclic group
$(n_{1}, n_{2}, \cdots , n_{k})$ : the greatest common divisor of $n_{1},$ $n_{2},$

$\cdots$ , $n_{k}$

$G,$ $G_{1},$ $G_{2}$ : groups
$Z(G)$ : the center of $G$

$D(G)$ : the commutator group of $G$

$G_{1}*G_{2},$ $G_{1}*G_{2}*G$ : the free product of $G_{1}$ and $G_{2}$ or of $G_{1},$ $G_{2}$

and $G$ respectively
$Z_{p}$ : a cyclic group of order $P$

$F(p)$ : a free group of rank $P$

$\{e\}$ : the trivial group
$e$ : the unit element
$G(p;q)$
$G(p;q;r)\}$ : special groups. See the definitions in \S 2.

\S 1. Introduction and statement of results.

Let $C$ be an irreducible curve in the projective space $P^{2}$ and let $G$ be the
fundamental group of the complement of $C$ . So far known, we have only two
cases: (I) $G$ is infinite and the commutator group $D(G)$ is a free group of a
finite rank (Zariski [8]; Oka [6]). (II) $G$ is a finite group (Zariski [8]).

We do not know whether this is true or not in general. The purpose of
this paper is to give a theorem which says that, for a certain case, we have
only the case (I). Namely let

(1.1) $C:\prod_{j=1}^{l}(Y-\beta_{j}Z)^{\nu_{j}}-\prod_{i=1}^{m}(X-\alpha_{i}Z)^{\lambda_{i}}=0$

where $X,$ $Y$ and $Z$ are homogenous coordinates of $P^{2}$ and


