Approximation by a sum of polynomials involving primes

By Ming-Chit Liu

(Received April 26, 1976)
(Revised April 17, 1978)

§ 1. Introduction

Based on the Hardy-Littlewood method, Davenport and Heilbronn [3] proved that if $\lambda_{1}, \cdots, \lambda_{s}$ are non-zero real numbers, not all of the same sign and not all in rational ratio and if for any given integer $k \geqq 1, s \geqq 2^{k}+1$, then for every $\varepsilon>0$ the inequality

$$
\left|\sum_{j=1}^{s} \lambda_{j} n_{j}^{k}\right|<\varepsilon
$$

has infinitely many solutions in natural numbers n_{j}. Later, Schwarz [10] showed that if either $s \geqq 2^{k}+1$ or $s \geqq 2 k^{2}(2 \log k+\log \log k+5 / 2)-1$ (for $k \geqq 12$), then the inequality

$$
\begin{equation*}
\left|\sum_{j=1}^{s} \lambda_{j} p_{j}^{k}\right|<\varepsilon \tag{1.1}
\end{equation*}
$$

has infinitely many solutions in prime numbers p_{j}. A. Baker [1] raised a new kind of approximation by proving that when $k=1, s=3$ and A is any arbitrary natural number, the ε in (1.1) can be replaced by $\left(\log \max p_{j}\right)^{-4}$. Recently, Ramachandra [9] has obtained this result for arbitrary k and with the p_{j}^{k} replaced by arbitrary integer-valued polynomials $f_{j}\left(p_{j}\right)$ with positive leading coefficients provided that s satisfies the same condition as that required by Schwarz. In 1974, Vaughan [12] made a remarkable progress in this problem by proving that if $k \geqq 4$,

$$
\begin{align*}
& \theta= \begin{cases}2^{1-k} & \text { if } k \leqq 12, \\
\left(2 k^{2}(2 \log k+\log \log k+3)\right)^{-1} & \text { if } k>12,\end{cases} \tag{1.2}\\
& N=[(-\log 2 \theta+\log (1-2 / k)) /(-\log (1-1 / k))] \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
s \geqq 2(k+N)+7 \text {, } \tag{1.4}
\end{equation*}
$$

then the ε in (1.1) can be replaced by $\left(\max p_{j}\right)^{-\sigma}$, where σ is any positive constant $<\left(5(k+1) 2^{2(k+1)}\right)^{-1}$. In this paper we shall adapt the elegant method of [12] to establish:

