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A. Bensoussan and J.L. Lions ([1]) has revealed a relation between an optimal
stopping problem of an additive functional of a diffusion process and a certain

variational inequality. More specifically let y(¢) be the solution of the stochastic
differential equation :
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Then they showed that the continuous and strong solution of the following
variational inequality (0.2) is the solution of the optimal stopping problem:
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Here A(t) is the generator of the diffusion process y(¢), & is the bilinear form
associated with A(f) and 9[&,] is the domain of &,.

However it is in general not easy to show that the (weak) solution of (0.2)
is the continuous and strong one, namely, a continuous solution of
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