Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals

By Tosio Kato* and Kyûya Masuda

(Received June 9, 1977)

1. Introduction.

It was proved in $[1,2]$ that

$$
\begin{equation*}
s-\lim _{n \rightarrow \infty}\left[e^{-(t / \pi) A_{2}} e^{-(t / n) A_{1}}\right]^{n}=e^{-t A^{\prime}} P^{\prime}, \quad t>0, \tag{1.1}
\end{equation*}
$$

whenever A_{1}, A_{2} are nonnegative selfadjoint operators in a Hilbert space H (with no restriction on their domains). Here P^{\prime} is the orthogonal projection of H onto the subspace H^{\prime} spanned by $D^{\prime}=D\left(A_{1}^{1 / 2}\right) \cap D\left(A_{2}^{1 / 2}\right)$ and A^{\prime} is the form sum of A_{1}, A_{2} (i. e. the selfadjoint operator in H^{\prime} associated with the denselydefined, closed quadratic form $\left\|A_{1}^{1 / 2} u\right\|^{2}+\left\|A_{2}^{1 / 2} u\right\|^{2}$).

The purpose of the present paper is to prove a nonlinear analogue of (1.1). As a natural generalization of a nonnegative selfadjoint operator, A_{j} will be replaced by the subdifferential $\partial \varphi_{j}$ of a lower semicontinuous, convex function $\varphi_{j} \equiv \equiv^{\infty}$ on H to $\left.]-\infty,+\infty\right]$; $-\partial \varphi_{j}$ generates a semigroup $\left\{e^{-t \partial \varphi_{j}}\right\}$ of nonlinear nonexpansive operators on $E_{j}=c l . D\left(\varphi_{j}\right)$. (For these notions see section 2.) Moreover, we shall admit any finite number N of such semigroups. Thus our result will take the form

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left[e^{-(t / / n) \partial \varphi_{N}} P_{N} \cdots e^{-(t / n) \partial \varphi_{1}} P_{1}\right]^{n} x=e^{-t \partial \varphi^{\prime}} x, \\
\varphi=\varphi_{1}+\cdots+\varphi_{N}, \quad t \geqq 0, x \in c l . D(\varphi), \tag{1.2}
\end{array}
$$

where P_{j} is the nonlinear projection of H onto the closed convex set E_{j}, and it is assumed that $\varphi \not \equiv+\infty$. Note that $\partial \varphi$ is the analogue of the form sum of the $\partial \varphi_{j}$. The factors P_{j} are necessary to ensure that the product on the left of (1.2) makes sense, since $e^{-t \partial \partial \varphi_{j}}$ is defined only on E_{j}.

Remark 1.1. The condition $x \in c l . D(\varphi)$ in (1.2) is a new restriction which was not needed in the linear case (1.1). A straightforward generalization of the latter would be to admit every $x \in H$ and replace x by $P x$ on the right-

[^0]
[^0]: * Partially supported by NSF Grant MCS 76-04655.

