Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals

By Tosio KATO* and Kyûya MASUDA

(Received June 9, 1977)

1. Introduction.

It was proved in [1, 2] that

s-lim
$$[e^{-(t/n)A_2}e^{-(t/n)A_1}]^n = e^{-tA'}P', \quad t > 0,$$
 (1.1)

whenever A_1 , A_2 are nonnegative selfadjoint operators in a Hilbert space H(with no restriction on their domains). Here P' is the orthogonal projection of H onto the subspace H' spanned by $D'=D(A_1^{1/2})\cap D(A_2^{1/2})$ and A' is the form sum of A_1 , A_2 (i.e. the selfadjoint operator in H' associated with the denselydefined, closed quadratic form $||A_1^{1/2}u||^2 + ||A_2^{1/2}u||^2$).

The purpose of the present paper is to prove a nonlinear analogue of (1.1). As a natural generalization of a nonnegative selfadjoint operator, A_j will be replaced by the subdifferential $\partial \varphi_j$ of a lower semicontinuous, convex function $\varphi_j \not\equiv +\infty$ on H to $]-\infty, +\infty]$; $-\partial \varphi_j$ generates a semigroup $\{e^{-t\partial \varphi_j}\}$ of non-linear nonexpansive operators on $E_j = cl.D(\varphi_j)$. (For these notions see section 2.) Moreover, we shall admit any finite number N of such semigroups. Thus our result will take the form

$$\lim_{n \to \infty} \left[e^{-(t/n)\partial\varphi_N} P_N \cdots e^{-(t/n)\partial\varphi_1} P_1 \right]^n x = e^{-t\partial\varphi} x,$$

$$\varphi = \varphi_1 + \cdots + \varphi_N, \quad t \ge 0, \ x \in cl.D(\varphi), \qquad (1.2)$$

where P_j is the nonlinear projection of H onto the closed convex set E_j , and it is assumed that $\varphi \not\equiv +\infty$. Note that $\partial \varphi$ is the analogue of the form sum of the $\partial \varphi_j$. The factors P_j are necessary to ensure that the product on the left of (1.2) makes sense, since $e^{-t\partial \varphi_j}$ is defined only on E_j .

REMARK 1.1. The condition $x \in cl.D(\varphi)$ in (1.2) is a new restriction which was not needed in the linear case (1.1). A straightforward generalization of the latter would be to admit every $x \in H$ and replace x by Px on the right-

^{*} Partially supported by NSF Grant MCS 76-04655.