Induced characters of some 2-groups

By Toshihiko YAMADA

(Received May 6, 1976)

Let G be a 2-group and χ a complex, irreducible charactor of G. The Schur index of χ with regard to the rational field Q is denoted by $m_Q(\chi)$. It is known that $m_Q(\chi)=1$ or 2, and that if $m_Q(\chi)=2$, then there exist a subgroup H of G and an irreducible character ϕ of H such that χ is induced from ϕ , i.e., $\chi=\phi^G$, $m_Q(\phi)=2$, and the factor group H/N, N=kernel of ϕ , is a generalized quaternion group (cf. (11.7) and (14.3) of [2], or [3]).

Now, let H' be a generalized quaternion group. The faithful irreducible characters of H' are algebraically conjugate to each other and their Schur indices are equal to 2, whereas any non-faithful irreducible character of H'has Schur index 1 (cf. [5, § 6]). So we ask a question: Let G be a 2-group, let H, N be subgroups of G such that $H \triangleright N$ and H/N is a generalized quaternion group, and let ϕ be a faithful irreducible character of H/N, which is also regarded as a character of H. Suppose that the induced character ϕ^{G} is irreducible. Is it true that the Schur index $m_{\mathbf{q}}(\phi^{G})=2$?

A simple case for the question is that $N=\{1\}$. Namely, let $G\supset H$ be 2groups, where H is a generalized quaternion group, and let ϕ be an irreducible charater of H such that $m_q(\phi)=2$ and ϕ^G is irreducible. Is it ture that $m_q(\phi^G)=2$? The purpose of the paper is to show that this is true for a class of induced characters ϕ^G , which are associated with cyclotomic algebras. Our result yields, as a special case, that if [G:H]=2, then the question is affirmative.

Let us briefly explain the contents of the paper. From now on, H_n denotes the generalized quaternion group of order 2^{n+1} $(n \ge 2)$, ϕ_n an irreducible character of H_n with $m_q(\phi_n)=2$, and ζ_s a primitive s-th root of unity, where s is a natural number. In §1, we investigate a 2-group G such that $G \supseteq H_n$ and that the induced character ϕ_n^G is irreducible (Theorem 1). We also determine the values of ϕ_n^G at elements x of G (Proposition 1).

In §2, we study a cyclotomic algebra B made with the extension $Q(\zeta_{2^n})/k$, where k is a subfield of the field $Q(\zeta_{2^n})$ of 2^n -th roots of unity. It will be shown that the index of B is 1 or 2, and if B has index 2, then there exists a 2-group G, which is a finite subgroup of the multiplicative group B^* such that