J. Math. Soc. Japan Vol. 30, No. 1, 1978

Remarks on conditional expectations in von Neumann algebra

By Yoshikazu KATAYAMA

(Received Aug. 8, 1975)

1. Introduction. The conditional expectation has been studied by several authors, e. g. [1] F. Combes, [5] I. Kovács and J. Szüces, [6] M. Nakamura and T. Turumaru and [9] H. Umegaki. Here in this note, we shall make a detailed study on the conditional expectation T_{ϕ} from M to $(M^{\Sigma\phi})e_{\phi}$ (See [1]). We then apply it to the strict semi-finiteness of weight.

The author wishes to thank Professors O. Takenouchi and S. Kitagawa for their helpful suggestions.

2. Conditional expectation. Given a weight ϕ on a von Neumann algebra M, we denote by m_{ϕ} the *-subalgebra spanned by $n_{\phi}^* n_{\phi}$ where $n_{\phi} = \{x \in M; \phi(x^*x) < +\infty\}$. The linear extension on m_{ϕ} of $\phi|_{(m_{\phi})+}$ will be denoted by $\dot{\phi}$.

The following theorem is a slight modification of [8] Theorem 3, which plays a crucial role in our study. The σ_t -invariance of T follows from the uniqueness of T.

THEOREM 1. Let M be a von Neumann algebra, ϕ a faithful normal semifinite weight on M, N a von Neumann subalgebra of M on which $\phi|_{N_+}$ is semifinite.

Then the following two statements are equivalent;

- (i) N is invariant under the modular automorphism group σ_t associated with ϕ .
- (ii) There exists a unique σ -weakly continuous conditional expectation T from M on N such that $\phi(x) = \phi \circ T(x)$ for all $x \in M_+$.

By excluding the condition " $\phi|_{N_+}$ is semi-finite" in the above Theorem 1, we get the following proposition.

PROPOSITION 2. Let M be a von Neumann algebra, ϕ a faithful normal semi-finite weight on M, N a von Neumann subalgebra, e_0 the greatest projection in the σ -weak closure of $m_{\phi}|_{N_+}$.

Then the following two statements are equivalent;

- (i) $e_0 N e_0$ is invariant under the modular automorphism group $\Sigma = \{\sigma_t\}$ associated with ϕ .
- (ii) e_0 is a projection of the subalgebra M^{Σ} of fixed points of M for Σ and