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1. Introduction. The conditional expectation has been studied by several
authors, $e$ . $g$ . $[1]$ F. Combes, [5] I. Kov\’acs and J. Sz\"uces, [6] M. Nakamura
and T. Turumaru and [9] H. Umegaki. Here in this note, we shall make a
detailed study on the conditional expectation $T_{\phi}$ from $M$ to $(M^{\Sigma}\phi)e_{\phi}$ (See [1]).

We then apply it to the strict semi-finiteness of weight.
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2. Conditional expectation. Given a weight $\phi$ on a von Neumann algebra
$M$, we denote by $m_{\phi}$ the $*$-subalgebra spanned by $n_{\phi}^{*}n_{\phi}$ where $n_{\phi}=\{x\in M$ ;
$\phi(x^{*}x)<+\infty\}$ . The linear extension on $m_{\phi}$ of $\phi|_{(m_{\psi)+}}$ will be denoted by $\dot{\phi}$ .

The following theorem is a slight modification of [8] Theorem 3, which
plays a crucial role in our study. The $\sigma_{t}$ -invariance of $T$ follows from the
uniqueness of $T$ .

THEOREM 1. Let $M$ be a von Neumann algebra, $\phi$ a faithful normal semi-
finite weight on $M,$ $N$ a von Neumann subalgebra of $M$ on which $\phi|_{N+}$ is semi-
finite.

Then the following two statements are equivalent;
(i) $N$ is invariant under the modular automorphism group $\sigma_{t}$ associated with $\phi$ .

(ii) There exists a unique a-weakly continuous conditional expectation $T$ from
$M$ on $N$ such that $\phi(x)=\phi\circ T(x)$ for all $x\in M_{+}$ .

By excluding the condition $\phi|_{N+}$ is semi-finite” in the above Theorem 1,
we get the following proposition.

PROPOSITION 2. Let $M$ be a von Neumann algebra, $\phi$ a faithful normal
semi-finite weight on $M,$ $N$ a von Neumann subalgebra, $e_{0}$ the greatest projection
in the $\sigma$-weak closure of $m_{\phi}|N+$

Then the following two statements are equivalent;
(i) $e_{0}$ Ne $0$ is invariant under the modular automorphism group $\Sigma=\{\sigma_{t}\}$ asso-

ciated with $\phi$ .
(ii) $e_{0}$ is a projection of the subalgebra $M^{\Sigma}$ of fixed points of $M$ for $\Sigma$ and


