The curvatures of the analytic capacity

By Jacob BURBEA

(Received Aug. 27, 1976)

§1. Introduction.

In [4] Suita has shown that the analytic capacity c(z) of a plane region $D \oplus 0_{AB}$ is real analytic and that the curvature of the metric c(z) |dz| is ≤ -4 . He also raised the conjecture that the curvature is equal to -4 at one point $z \in D$ if and only if $D \in \mathcal{D}_B$. D is said to belong to \mathcal{D}_B if it is conformally equivalent to the unit disc less (possibly) a closed set expressed as a countable union of compact N_B sets. The papers [5] and [2] provide a different proof for Suita's result and actually resolve the conjecture of Suita in case $D \in \mathcal{D}_p$, $1 \leq p < \infty$. Here \mathcal{D}_p denotes the class of all *p*-connected regions with no degenerate boundary component. In the present paper we generalize the results of [2] and [5] to higher order curvatures (Theorem 1). Specifically we show that, for any point z in $D \oplus 0_{AB}$, $c^{(n+1)^2} \leq (\prod_{k=1}^{n} k!)^{-2} \det \|c_{j\bar{k}}\|_{j,k=0}^{n}$, where c = c(z)and $c_{j\bar{k}} = \frac{\partial^{j+k}c}{\partial z^j \partial \bar{z}^k}$. For n=1, we obtain the result of [4]. Moreover, if $D \in \mathcal{D}_B$ then we have equality in the above inequality for each $z \in D$ and every n=0, 1,.... If $D \in \mathcal{D}_p$ then equality at one point $z \in D$ holds if and only if p=1. Several other properties related to the analytic capacity are proved. Our proofs are based on the "method of minimum integral" with respect to the Szegö kernel function. As in [2] we also show that the above inequality is strict if the Ahlfors function with respect to z has a zero in D other than z.

§ 2. Analytic capacity.

Let D be a plane region $\oplus 0_{AB}$ and let $H(D: \varDelta)$ designate the class of all analytic functions from D into the unit disc \varDelta . Let $\zeta \oplus D$ and set $H_{\zeta}(D: \varDelta)$ $= \{f \oplus H(D: \varDelta): f(\zeta) = 0\}$. The analytic capacity $c(\zeta) = c_D(\zeta)$ is given by $c(\zeta)$ $= \sup \{|f'(\zeta)|: f \oplus H_{\zeta}(D: \varDelta)\}$. There exists (cf. [3]) a unique function F in $H_{\zeta}(D: \varDelta)$, called the Ahlfors function $F(z) = F(z: \zeta)$, such that $F'(\zeta) = c(\zeta)$. Clearly, c(z)|dz| is a conformal invariant metric. Using a canonical exhaustion process (cf. [4]) it can be shown that c(z) is real analytic and hence we can introduce