Nonlinear oscillation of second order functional differential equations with advanced argument

By Takaŝi Kusano and Hiroshi Onose

(Received June 29, 1976)

§ 1. Introduction.

In this paper we consider the nonlinear second order functional differential equation with advanced argument

$$
\begin{equation*}
\left[r(t) y^{\prime}(t)\right]^{\prime}+f(y(g(t)), t)=0 . \tag{1}
\end{equation*}
$$

The conditions we always assume for r, g, f are as follows:
(a) $r(t)$ is continuous and positive for $t \geqq \alpha$;
(b) $g(t)$ is continuous for $t \geqq \alpha$, and $g(t) \geqq t$;
(c) $f(y, t)$ is continuous for $|y|<\infty, t \geqq \alpha$, and $y f(y, t)>0$ for $y \neq 0, t \geqq \alpha$.

It is convenient to classify equations of the form (1) according to the nonlinearity of $f(y, t)$ with respect to y. Equation (1) is called superlinear if, for each fixed $t, f(y, t) / y$ is nondecreasing in y for $y>0$ and nonincreasing in y for $y<0$. It is called strongly superlinear if there exists a number $\sigma>1$ such that, for each fixed $t, f(y, t) /|y|^{\sigma} \operatorname{sgn} y$ is nondecreasing in y for $y>0$ and nonincreasing in y for $y<0$. Equation (1) is called sublinear if, for each fixed $t, f(y, t) / y$ is nonincreasing in y for $y>0$ and nondecreasing in y for $y<0$. It is called strongly sublinear if there exists a number $\tau<1$ such that, for each t, $f(y, t) /|y|^{\tau} \operatorname{sgn} y$ is nonincreasing in y for $y>0$ and nondecreasing in y for $y<0$. This classification includes the corresponding classification of the equations of the form

$$
\begin{equation*}
\left[r(t) y^{\prime}(t)\right]^{\prime}+y(g(t)) F\left([y(g(t))]^{2}, t\right)=0 \tag{2}
\end{equation*}
$$

as given in [6]. (See also [5] and [9].)
In what follows we restrict our discussion to those solutions $y(t)$ of (1) which exist on some ray $\left[T_{y}, \infty\right)$ and satisfy $\sup \{|y(t)|: t \geqq T\}>0$ for every $T \geqq T_{y}$. Such a solution is said to be oscillatory if the set of its zeros is not bounded; otherwise, it is said to be nonoscillatory. Equation (1) itself is called oscillatory if all of its solutions are oscillatory.

