Nonlinear oscillation of second order functional differential equations with advanced argument

By Takaŝi KUSANO and Hiroshi ONOSE

(Received June 29, 1976)

§1. Introduction.

In this paper we consider the nonlinear second order functional differential equation with advanced argument

(1) [r(t)y'(t)]' + f(y(g(t)), t) = 0.

The conditions we always assume for r, g, f are as follows:

- (a) r(t) is continuous and positive for $t \ge \alpha$;
- (b) g(t) is continuous for $t \ge \alpha$, and $g(t) \ge t$;
- (c) f(y, t) is continuous for $|y| < \infty$, $t \ge \alpha$, and yf(y, t) > 0 for $y \ne 0$, $t \ge \alpha$.

It is convenient to classify equations of the form (1) according to the nonlinearity of f(y, t) with respect to y. Equation (1) is called *superlinear* if, for each fixed t, f(y, t)/y is nondecreasing in y for y>0 and nonincreasing in y for y<0. It is called *strongly superlinear* if there exists a number $\sigma>1$ such that, for each fixed t, $f(y, t)/|y|^{\sigma}$ sgn y is nondecreasing in y for y>0 and nonincreasing in y for y<0. Equation (1) is called *sublinear* if, for each fixed t, f(y, t)/|y|is nonincreasing in y for y>0 and nondecreasing in y for y<0. It is called *strongly sublinear* if there exists a number $\tau<1$ such that, for each t, $f(y, t)/|y|^{\tau}$ sgn y is nonincreasing in y for y>0 and nondecreasing in y for y<0. This classification includes the corresponding classification of the equations of the form

(2)
$$[r(t)y'(t)]' + y(g(t))F([y(g(t))]^2, t) = 0$$

as given in [6]. (See also [5] and [9].)

In what follows we restrict our discussion to those solutions y(t) of (1) which exist on some ray $[T_y, \infty)$ and satisfy $\sup \{|y(t)| : t \ge T\} > 0$ for every $T \ge T_y$. Such a solution is said to be *oscillatory* if the set of its zeros is not bounded; otherwise, it is said to be *nonoscillatory*. Equation (1) itself is called oscillatory if all of its solutions are oscillatory.