J. Math. Soc. Japan Vol. 29, No. 3, 1977

Groups of algebras over $A \otimes \overline{A}$

By Mitsuhiro TAKEUCHI

(Received May 21, 1976)

Introduction.

Let A be an R-algebra, where R is a fixed commutative ring. An algebra over A is a pair (U, i) where U is an R-algebra and $i: A \rightarrow U$ an R-algebra map. They form a category. The definition of morphisms is obvious.

Sweedler [1] starts to try to classify algebras over A by their underlying *A-bimodules*. In almost all the chapters he assumes the algebra A is commutative. His method is useful for such algebras (U, i) over A as i sends A isomorphically onto the centralizer of A in U.

When A is commutative, he defines a product " \times_A " on the category of algebras over A. This product is neither in general associative nor unitary.

 $A \times_A$ -bialgebra is a triple $(B, \mathcal{A}, \mathcal{S})$ where B is an algebra over A and $\mathcal{A}: B \to B \times_A B, \mathcal{S}: B \to \text{End}_R A$ are maps of algebras over A making some diagrams commute.

When \mathcal{I} is an isomorphism and \mathcal{S} is injective, he defines \mathcal{E}_B to be the set of isomorphism classes of algebras (U, i) over A such that $U \cong B$ as A-bimodules. He shows that i then maps A isomorphically onto the centralizer in U of A. The product " \times_A " makes \mathcal{E}_B into an abelian monoid with unit $\langle B \rangle$ the class of B.

Let $\mathcal{G}\langle B \rangle$ denote the group of invertible elements in \mathcal{E}_B .

Among other things he proves that if $\langle U \rangle$ the class of of U belongs to $\mathcal{Q}\langle B \rangle$ then there is a canonical isomorphism of algebras over A

$$\zeta : (U^0 \times_A U)^0 \longrightarrow B$$

with the assumption of the existence of some isomorphism $S: B \to (B^0 \times_A B)^0$ of algebras over A, called an "Ess" map. Here we denote by U^0 the *opposite* algebra to U considered as an algebra over A.

Based on this fact, he shows that if A is a simple B-module (via $\mathcal{G}: B \rightarrow \text{End}_R A$), then all algebras (U, i) over A with $\langle U \rangle \in \mathcal{G} \langle B \rangle$ are simple. (Exactly, some additional hypothesis on B is needed).

Further, for a \times_A -bialgebra $(B, \mathcal{A}, \mathcal{S})$ where \mathcal{A} is an isomorphism and \mathcal{S} is injective he constructs some semi-co-simplicial complex consisting of commutative