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\S 1. Introduction.

We will consider the Cauchy problem for the semilinear heat equation

(1.1) $\frac{\partial u}{\partial t}=\Delta u\perp f(u)$ , $t>0,$ $x\in R^{u}$

with the initial condition $u(O, x)=a(x)$ . It is assumed that the function $f$ is
defined, non-negative and locally Lipschitz continuous in $[0, \infty$ ). If the initial
value $a(x)$ is a bounded non-negative continuous function in $R^{d}$ , not vanishing
identically, then it is well-known that there exists a positive local solution
$u(t, x)$ of (1.1); more precisely, there exist positive $T(\leqq\infty)$ and $u(t, x)$ satis-
fying the following conditions (i), (ii) and (iii).

(i) $u(t, x)$ is defined on $[0, T$ ) $\times R^{d}$ , strictly positive in $(0, T)\times R^{d}$ and
$u(0, x)=a(x)$ .

(ii) For any $T^{\prime}<T,$ $u(t, x)$ is bounded and continuous on $[0, T^{\prime}]\times R^{d}$ .
(iii) $\frac{\partial u}{\partial t}$ and $\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}(1\leqq i, j\leqq d)$ exist in $(0, T)\times R^{d}$ and $u(t, x)$ satisfies

(1.1) in the classical sense.
If $T_{\infty}=T_{\infty}(a, f)$ denotes the supremum of all $T$ satisfying the above three con-
ditions, then the existence of global solution is the case $ T_{\infty}=\infty$ , and in the
general situation $(T_{\infty}\leqq\infty)$ the unique existence assertion amounts to say that
there exists a unique solution $u(t, x)$ of (1.1) up to $T_{\infty}$ satisfying the above
three conditions with $T=T_{\infty}$ . In this Paper, such a solution is called simply a
positive solution of (1.1), and is denoted by $u(t, x;a, f)$ when we want to eluci-
date the initial value $a(x)$ and the nonlinear term $f(u)$ . A positive solution of
(1.1) is said to blow $uP$ in a finite time and the corresponding $T_{\infty}$ is called the
blowing-up time of the solution, provided that $ T_{\infty}<\infty$ . A global positive solu-
tion $u(t, x)$ of (1.1) is said to grow up to infinity, if for each positive constant
$M$ and each compact set $K$ in $R^{d}$ there exists $ T<\infty$ such that $t>T$ and $x\in K$

imply $u(t, x)>M$.
The purpose of this paper is to investigate the following problem: How


