J. Math. Soc. Japan Vol. 29, No. 3, 1977

On the growing up problem for semilinear heat equations

By Kusuo KOBAYASHI, Tunekiti SIRAO and Hiroshi TANAKA

(Received Jan. 17, 1976)

§1. Introduction.

We will consider the Cauchy problem for the semilinear heat equation

(1.1)
$$\frac{\partial u}{\partial t} = \varDelta u + f(u), \qquad t > 0, \ x \in R^{\omega}.$$

with the initial condition u(0, x) = a(x). It is assumed that the function f is defined, non-negative and locally Lipschitz continuous in $[0, \infty)$. If the initial value a(x) is a bounded non-negative continuous function in \mathbb{R}^d , not vanishing identically, then it is well-known that there exists a positive local solution u(t, x) of (1.1); more precisely, there exist positive T ($\leq \infty$) and u(t, x) satisfying the following conditions (i), (ii) and (iii).

- (i) u(t, x) is defined on $[0, T) \times R^d$, strictly positive in $(0, T) \times R^d$ and u(0, x) = a(x).
- (ii) For any T' < T, u(t, x) is bounded and continuous on $[0, T'] \times R^d$.
- (iii) $\frac{\partial u}{\partial t}$ and $\frac{\partial^2 u}{\partial x_i \partial x_j}$ $(1 \le i, j \le d)$ exist in $(0, T) \times R^d$ and u(t, x) satisfies (1.1) in the classical sense.

If $T_{\infty}=T_{\infty}(a, f)$ denotes the supremum of all T satisfying the above three conditions, then the existence of global solution is the case $T_{\infty}=\infty$, and in the general situation $(T_{\infty}\leq \infty)$ the unique existence assertion amounts to say that there exists a unique solution u(t, x) of (1.1) up to T_{∞} satisfying the above three conditions with $T=T_{\infty}$. In this paper, such a solution is called simply a positive solution of (1.1), and is denoted by u(t, x; a, f) when we want to elucidate the initial value a(x) and the nonlinear term f(u). A positive solution of (1.1) is said to blow up in a finite time and the corresponding T_{∞} is called the blowing-up time of the solution, provided that $T_{\infty}<\infty$. A global positive solution u(t, x) of (1.1) is said to grow up to infinity, if for each positive constant M and each compact set K in \mathbb{R}^d there exists $T<\infty$ such that t>T and $x \in K$ imply u(t, x) > M.

The purpose of this paper is to investigate the following problem: How