The asymptotic distribution of discrete eigenvalues for Schrödinger operators

By Hideo TAMURA

(Received June 17, 1975) (Revised Aug. 9, 1976)

§0. Introduction.

We consider the following eigenvalue problem:

 $-\Delta u - p(x)u = \lambda u^{0}, \qquad u \in L^2(\mathbb{R}^n).$

If p(x) does not decay too rapidly at infinity, the above problem has an infinite sequence of negative eigenvalues (bound states) approaching to zero. We denote by n(r; p) (r>0) the number of eigenvalues less than -r. In this paper we are concerned with the asymptotic behavior of n(r; p) as r tends to zero.

The asymptotic distribution of negative eigenvalues for the Schödinger operators has been studied in Brownell and Clark [4] and McLeod [6] under the condition that the potential p(x) is non-negative and sufficiently close to a spherically symmetric potential.

The purpose of the present paper is to study the distribution of eigenvalues by a different method from those in [4] and [6] without assuming the above condition.

we shall briefly explain our approach. Our method is based on the following proposition (see Birman [1]).

PROPOSITION 0.1. Let H_0 be the unique self-adjoint realization of $-\Delta$ with domain $\mathcal{D}(H_0) = H^2(\mathbb{R}^n)$ (the Sobolev space of order 2). Assume that $|p|^{1/2}$ is a $H_0^{1/2}$ -compact operator as a multiplicative operator. Let \mathcal{D} be a core of $H_0^{1/2}$. Then, n(r; p) coincides with the maximal dimension of subspaces lying in \mathcal{D} such that

$$(H_0^{1/2}u, H_0^{1/2}u) - (pu, u) < -r(u, u),$$

where (,) stands for the usual scalar product in $L^2(\mathbb{R}^n)$.

By making use of this proposition, we shall prove the following theorem.

⁰⁾ It is convenient to write the Schrödinger operator as $-\Delta - p(x)$ instead of as the usual notation $-\Delta + p(x)$ since we are mainly concerned with an eigenvalue problem of the following form: $-\Delta u + u = \lambda p(x)u$, p(x) > 0.