On irreducible unitary characters of a certain group extension of $G L(2, \boldsymbol{C})$

By Takuro Shintani

(Received July 14, 1976)

Introduction.

$0-1$. Let $G=G L(2, C)$ be the complex general linear group of order 2. Denote by $\langle\sigma\rangle$ a group of automorphisms of G generated by the complex conjugation σ. Let G^{\sim} be the semi-direct product of G with $\langle\sigma\rangle$. More precisely, G^{\sim} is the group whose underlying set is $G \times\langle\sigma\rangle$ and whose composition law is given by $(g, \tau)\left(g^{\prime}, \tau^{\prime}\right)=\left(g^{\tau^{\prime}} g^{\prime}, \tau \tau^{\prime}\right)$. Then G^{\sim} is a disconnected Lie group which has G as a connected component of the identity element. Let T be an irreducible unitary representation of G^{\sim}. Then the restriction of T to G is either an irreducible representation of G or the direct sum of two mutually inequivalent irreducible representations of G. Accordingly, T is said to be of the first or the second kind. In the following, we assume T to be of the first kind. For each smooth and compactly supported function f on G, it is known that the operator $\int_{G} f(g) T(g, \sigma) d g$ is a trace operator acting on the representation space of T ($d g$ is an invariant measure on G). Moreover it is shown that there exists a locally integrable function trace $T(g, \sigma)$ on G such that

$$
\operatorname{trace} \int_{G} f(g) T(g, \sigma) d g=\int_{G} f(g) \operatorname{trace} T(g, \sigma) d g .
$$

On the other hand, set $G_{\boldsymbol{R}}=G L(2, \boldsymbol{R})$. It is known that, for any irreducible unitary representation r of G_{R}, there exists a locally summable class function trace $r(x)$ on G_{R} such that

$$
\operatorname{trace} \int_{G_{R}} \varphi(x) r(x) d x=\int_{G_{R}} \varphi(x) \operatorname{trace} r(x) d x
$$

for any smooth and compactly supported function φ on G_{R} ($d x$ is an invariant measure on G_{R}). We extend a class function trace r on G_{R} to a class function on G_{C} by setting

$$
\operatorname{trace} r(g)= \begin{cases}\operatorname{trace} r(x) & \text { if } g \text { is conjugate to } x \in G_{R} \text { in } G_{C}, \\ 0 & \text { otherwise. }\end{cases}
$$

