On irreducible unitary characters of a certain group extension of GL(2, C)

By Takuro Shintani

(Received July 14, 1976)

Introduction.

0-1. Let G=GL(2, C) be the complex general linear group of order 2. Denote by $\langle \sigma \rangle$ a group of automorphisms of G generated by the complex conjugation σ . Let G^{\sim} be the semi-direct product of G with $\langle \sigma \rangle$. More precisely, G^{\sim} is the group whose underlying set is $G \times \langle \sigma \rangle$ and whose composition law is given by $(g, \tau)(g', \tau') = (g^{\tau'}g', \tau\tau')$. Then G^{\sim} is a disconnected Lie group which has G as a connected component of the identity element. Let T be an irreducible unitary representation of G^{\sim} . Then the restriction of T to G is either an irreducible representation of G or the direct sum of two mutually inequivalent irreducible representations of G. Accordingly, T is said to be of the first or the second kind. In the following, we assume T to be of the first kind. For each smooth and compactly supported function f on G, it is known that the operator $\int_G f(g)T(g, \sigma)dg$ is a trace operator acting on the representation space of T (dg is an invariant measure on G). Moreover it is shown that there exists a locally integrable function trace $T(g, \sigma)$ on G such that

trace
$$\int_{\boldsymbol{g}} f(g)T(g, \sigma)dg = \int_{\boldsymbol{g}} f(g)$$
 trace $T(g, \sigma)dg$.

On the other hand, set $G_R = GL(2, \mathbf{R})$. It is known that, for any irreducible unitary representation r of G_R , there exists a locally summable class function trace r(x) on G_R such that

trace
$$\int_{G_R} \varphi(x) r(x) dx = \int_{G_R} \varphi(x)$$
 trace $r(x) dx$

for any smooth and compactly supported function φ on G_R (dx is an invariant measure on G_R). We extend a class function trace r on G_R to a class function on G_c by setting

trace
$$r(g) = \begin{cases} \text{trace } r(x) & \text{if } g \text{ is conjugate to } x \in G_R \text{ in } G_C \text{,} \\ 0 & \text{otherwise.} \end{cases}$$