On a construction of a recurrent potential kernel by mean of time change and killing

By Yoichi Ōshima

(Received Feb. 14, 1976)

§ 1. Introduction.

Let E be a locally compact Hausdorff space with countable base, \mathcal{E} be the σ-field of Borel subsets of E and $\left.\boldsymbol{X}=\left(\Omega, \mathscr{F}, \mathscr{I}_{t}\right)_{t \geqq 0},\left(X_{t}\right)_{t \geqq 0},\left(\theta_{t}\right)_{t \geq 0},\left(P^{x}\right)_{x \in E}\right)$ be a Hunt process on (E, \mathcal{E}). The constructions of the (weak) potential kernel of X were given by many authors ([6], [9], [11], [13]). In this paper we shall give a construction by mean of time change and killing. Let $\boldsymbol{A}=\left(A_{t}\right)_{t \geqq 0}$ be a non-trivial non-negative continuous additive functional of \boldsymbol{X} such that $A_{t}<\infty$ a.s. for all $t<\infty$. Let $K_{P, C}^{0}$ and $G_{P, C}^{0}$ be the resolvent of the time changed process corresponding to the additive functional \boldsymbol{A}^{C} and the potential kernel of the subprocess of \boldsymbol{X} corresponding to the multiplicative functional $\left(e^{-P A_{t}^{C}}\right)_{t \geqq 0}$, respectively, where \boldsymbol{A}^{c} is defined by

$$
A_{t}^{c}=\int_{0}^{t} I_{c}\left(X_{s}\right) d A_{s}
$$

for a Borel subset C of E. Then for a suitably chosen Borel subset C of E there exists a potential kernel K_{C} of $K_{1, C}^{0}$ restricted to $C \times C$ and the kernel defined by

$$
K(x, d y)=G_{1, c}^{0}(x, d y)+K_{1, c}^{0} K_{C} G_{1, c}^{0}(x, d y)
$$

is a potential kernel of \boldsymbol{X}. If there exists a dual Hunt process $\hat{\boldsymbol{X}}$ of \boldsymbol{X} relative to the invariant measure μ of \boldsymbol{X} then the kernels K and \hat{K} defined as above by \boldsymbol{A}^{c} and $\hat{\boldsymbol{A}}^{c}$ are in dual relative to μ, where $\hat{\boldsymbol{A}}$ is the dual continuous additive functional of \boldsymbol{A}. By these method, we can construct, explicitly, the potential kernel of one dimensional non-singular diffusion processes.

§ 2. Construction of a potential kernel.

Throughout in this paper we shall assume that \boldsymbol{X} is a recurrent Hunt process on (E, \mathcal{E}), that is, it satisfies the following equivalent conditions (Azema-Duflo-Revuz [1], Blumenthal-Getoor [5] problems II.4.17-4.20).

