Note on the positive definite integral quadratic lattice

By Michio OZEKI

(Received July 4, 1973) (Revised Jan. 23, 1976)

§0. Introduction.

By a quadratic lattice L we understand a finitely generated module over Z, the ring of rational integers in which a metric is given in the sense of M. Eichler [2]. The bilinear form associated to the metric is denoted by (x, y) where x and y are elements of L. If for any $x \neq 0$ in L we have (x, x) > 0, we shall say L is positive definite, and if it holds that $(x, y) \in Z$ for any pair x and y in L, we shall say L is integral. Since we shall confine ourselves to the positive definite integral quadratic lattice only, we shall call such a lattice merely a lattice. Since for any element x of a lattice L(x, x) is a positive rational integer m. It is known that the sublattice generated by 2-vectors in a lattice plays an important role in the classification theory of positive definite integral quadratic lattices (E. Witt [8], M. Kneser [4], H.-V. Niemeier [5]).

The first purpose of this paper is to show that when n is an integer not smaller than 17 among all lattices of fixed rank n a lattice has the largest number of 2-vectors if and only if L contains D_n or L is equal to B_n (D_n and B_n are defined in §1). Roughly speaking, the set of 2-vectors and 1-vectors in a lattice exibits the order of the subgroup generated by reflections in the group of units of that lattice.

Our second purpose in this paper is to prove Theorem 2 which says that if the determinant of a lattice L exceeds 2^n , where n equals to the rank of L, then the rank of the sublattice of L generated by 2-vectors is smaller than n.

Though a fair part of the results in \$2 is not new, we think it is not worthless to expose it with abbreviated proofs because some of the standpoints is not found in previous literatures as far as we know.

§1. Some basic notations and definitions.

We shall use $e_1, e_2, \dots, e_m, f_1, f_2, \dots, f_k$ or g_1, \dots, g_p as orthonormal vectors in an Euclidean space \mathbb{R}^n of sufficiently large dimension n $(n=1, 2, 3, \dots)$. We