J. Math. Soc. Japan Vol. 28, No. 2, 1976

Two remarks on irreducible characters of finite general linear groups

By Takuro SHINTANI

(Received June 21, 1975)

Introduction.

0-1. Let k be a finite field and K be a finite extension of k. It is wellknown (and is easily verified) that any character of $K^* = GL(1, K)$, invariant under the action of the Galois group of K with respect to k, is a composition of the norm homomorphism from K^* onto k^* and a suitable character of k^* . In this paper, we prove an analogous result for irreducible characters of finite general linear groups $GL_n(k)$. In more detail, let σ be the Frobenius automorphism of K with respect to k. Then σ acts naturally on $GL_n(K)$ as an automorphism with the fixed points set $GL_n(k)$. An irreducible representation R of $GL_n(K)$ is said to be σ -invariant if the representation $R^{\sigma} = R \circ \sigma$ is equivalent to R. If R is σ -invariant, there exists a linear transformation I_{σ} of the representation space V of R which satisfies

 $R(g)I_{\sigma} = I_{\sigma}R(g^{\sigma}) \qquad (\forall g \in GL_n(K))$

 $(I_{\sigma} \text{ is unique up to a constant scalar factor}).$ We extend any class function χ on $GL_n(k)$ to a class function on $GL_n(K)$ by setting

 $\chi(x) = \begin{cases} \chi(x') & \text{if there exists an } x' \in GL_n(k) \text{ which is} \\ & \text{conjugate to } x \text{ in } GL_n(K) \text{,} \\ 0 & \text{otherwise.} \end{cases}$

This is possible since two elements in $GL_n(k)$ are conjugate if and only if they are conjugate in $GL_n(K)$.

Now, we have:

THEOREM 1. Let notations be as above. For a suitable normalization of I_{σ} , there exists an irreducible character χ_R of $GL_n(k)$ which satisfies trace $I_{\sigma}R(g) = \chi_R(\operatorname{Norm}_{K/k}(g))$ (${}^{\forall}g \in GL_n(K)$), where

$$\operatorname{Norm}_{K/k}(g) = g^{\sigma^{m-1}} g^{\sigma^{m-2}} \cdots g^{\sigma} g \qquad (m = \deg K/k).$$

Moreover, the mapping $R \mapsto \chi_R$ establishes the bijection from the set of equivalence classes of σ -invariant irreducible representations of $GL_n(K)$ onto the set