Determination of homotopy spheres that admit free actions of finite cyclic groups

By Yasuhiko KITADA

(Received May 6, 1975)

Introduction.

In this paper, we shall determine the homotopy spheres that admit free actions of the finite cyclic group \mathbb{Z}_{m} where m is an integer. In the case of free involutions, namely when $m=2$, Lopez de Medrano gave an answer in [6] using the results of Browder $[2]$ on Kervaire invariants. Also, Orlik $[9]$ showed that every homotopy sphere that bounds a parallelizable manifold admits a free Z_{pr} -action where p is an odd prime by constructing explicit examples on Brieskorn spheres.

If one tries to follow the line of Lopez de Medrano when m is an arbitrary integer, one faces with the difficulty when $m\equiv 0 \pmod 4$. So we shall adopt the philosophy of Brumfiel [3]. In this process, we must construct a surgery theory on manifolds with singularity which are called \tilde{Z}_{m} manifolds in this paper ($\S \$ 4, 5). We shall give a brief view of our program:

\S 1: We state our main result (Theorem 6.1) together with notations which will be frequently used in this paper.

§ 2: We construct a free Z_{m} -action on a Brieskorn sphere of dimension $=4k+1$. This example plays an important rôle in later sections.

 $\S 3:$ We discuss the surgery theory on odd-dimensional manifolds with $\pi_{1}=Z_{m}$ improving the result of Wall [13] 14E.4.

 $\S 4$: The definition and elementary properties of \tilde{Z}_{m} manifolds are stated.

 $\S 5:$ The results of $\S 3$ and $\S 4$ are combined to yield the surgery theory for "simply connected" \widetilde{Z}_{m} -manifolds.

 $\S 6$: The results of $\S 3$ and $\S 5$ are applied to give a proof of our main theorem.

^I would like to thank Professors A. Hattori and Y. Matsumoto for valuable criticism and advices.

\S 1. Statement of the main theorem.

We have a linear \mathbb{Z}_m -action on $S^{2n+1}\subset \mathbb{C}^{n+1}$ where the action is given by $(x_{0}, z_{1}, \cdots , z_{n})\rightarrow(\alpha z_{0}, \alpha^{p_{1}}z_{1}, \cdots , \alpha^{p_{n}}z_{n})$ with $\alpha=\exp(2\pi i/m)$ and $(p_{j}, m)=1$. The