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Introduction.

In this paper, we shall determine the homotopy spheres that admit free
actions of the finite cyclic group $Z_{m}$ where $m$ is an integer. In the case of
free involutions, namely when $m=2$ , Lopez de Medrano gave an answer in [6]

using the results of Browder [2] on Kervaire invariants. Also, Orlik [9]

showed that every homotopy sphere that bounds a parallelizable manifold
admits a free $Z_{p^{r}}$-action where $p$ is an odd prime by constructing explicit
examples on Brieskorn spheres.

If one tries to follow the line of Lopez de Medrano when $m$ is an arbitrary
integer, one faces with the difficulty when $m\equiv 0(mod 4)$ . So we shall adopt
the philosophy of Brumfiel [3]. In this process, we must construct a surgery
theory on manifolds with singularity which are called $\tilde{Z}_{m}$-manifolds in this
paper (\S \S 4, 5). We shall give a brief view of our program:

\S 1: We state our main result (Theorem 6.1) together with notations
which will be frequently used in this paper.

\S 2: We construct a free $Z_{m}$-action on a Brieskorn sphere of dimension
$=4k+1$ . This example plays an important r\^ole in later sections.

\S 3: We discuss the surgery theory on odd-dimensional manifolds with
$\pi_{1}=Z_{m}$ improving the result of Wall [13] $14E.4$ .

\S 4: The definition and elementary properties of $\tilde{Z}_{m}$-manifolds are stated.
\S 5: The results of \S 3 and \S 4 are combined to yield the surgery theory

for ”simply connected” $\tilde{Z}_{m}$-manifolds.
\S 6: The results of \S 3 and \S 5 are applied to give a proof of our main

theorem.
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\S 1. Statement of the main theorem.

We have a linear $Z_{m}$-action on $S^{2n+1}\subset C^{n+1}$ where the action is given by
$(z_{0}, z_{1}, \cdots , z_{n})\mapsto(\alpha z_{0}, \alpha^{p_{1}}z_{1}, \cdots , \alpha^{p_{n}}z_{n})$ with $\alpha=\exp(2\pi i/m)$ and $(p_{j}, m)=1$ . The


