J. Math. Soc. Japan Vol. 28, No. 2, 1976

A note on automorphisms of real semisimple Lie algebras

By Takeshi HIRAI

(Received Jan. 24, 1975)

Let g be a real semisimple Lie algebra, h a Cartan subalgebra of g, g_c and h_c the complexifications of g and h respectively, and σ the conjugation of g_c with respect to g. Denote by $W(h_c)$ the Weyl group of g_c acting on h_c , and let $W_{\sigma}(h)$ be the subgroup of $W(h_c)$ consisting of elements leaving h stable or

 $W_{\sigma}(\mathfrak{h}) = \{ w \in W(\mathfrak{h}_{c}) ; w \circ \sigma = \sigma \circ w \text{ on } \mathfrak{h}_{c} \} .$

The purpose of this paper is to study the structure of the group $W_{\sigma}(\mathfrak{h})$, as was done in [7, Appendix] for such \mathfrak{h} which has the maximal vector part.

§1. Statement of Theorem.

For any linear form λ on \mathfrak{h}_c , we define $\sigma\lambda$ as $(\sigma\lambda)(X) = \lambda(\sigma X)$ $(X \in \mathfrak{h}_c)$, where \bar{a} denotes the conjugate number of $a \in C$. If α is a root of $(\mathfrak{g}_c, \mathfrak{h}_c)$, then so is $\sigma\alpha$. Let \mathfrak{r} be the root system of $(\mathfrak{g}_c, \mathfrak{h}_c)$, then it is a σ -system of roots in the sense of [1] with the involutive automorphism σ . A root α is called real or imaginary if $\sigma\alpha = \alpha$ or $\sigma\alpha = -\alpha$ respectively. We see that α is real or imaginary if and only if it takes only real or purely imaginary values on \mathfrak{h} respectively. Denote by \mathfrak{r}_R and \mathfrak{r}_I the sets of all real or imaginary roots in \mathfrak{r} respectively. Let $W_R(\mathfrak{h})$ and $W_I(\mathfrak{h})$ be the groups generated by $\{s_\alpha; \alpha \in \mathfrak{r}_R\}$ and $\{s_\alpha; \alpha \in \mathfrak{r}_I\}$ respectively, where s_α denotes the reflexion corresponding to a root α . Then they are normal subgroups of $W_\sigma(\mathfrak{h})$, because $W_\sigma(\mathfrak{h})$ leaves \mathfrak{r}_R and \mathfrak{r}_I stable.

Let G be a connected Lie group with Lie algebra g. For a subset F of g, let $N_G(F)$ and $Z_G(F)$ be the normalizer and the centralizer of F in G respectively, and put $W_G(F)=N_G(F)/Z_G(F)$. Then $W_G(\mathfrak{h})$ is considered canonically as a subgroup of $W(\mathfrak{h}_c)$, and also of $W_{\sigma}(\mathfrak{h})$ since $\operatorname{Ad}(g) \circ \sigma = \sigma \circ \operatorname{Ad}(g)$ on \mathfrak{g}_c for any $g \in G$. We know that $W_R(\mathfrak{h})$ is a subgroup of $W_G(\mathfrak{h})$ (see for instance [2, p. 256]). An imaginary root α is called compact if $(\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha} + [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]) \cap \mathfrak{g}$ is isomorphic to $\mathfrak{Su}(2)$, where $\mathfrak{g}_{\pm \alpha}$ are the spaces of root vectors corresponding to $\pm \alpha$. If $\alpha \in \mathfrak{r}_I$ is compact, then $\mathfrak{s}_{\alpha} \in W_G(\mathfrak{h})$ [2, p. 256]. We define the vector part \mathfrak{h}^- and the toroidal part \mathfrak{h}^+ of \mathfrak{h} as follows: