On a tensor product C^* -algebra associated with the free group on two generators

By Charles A. AKEMANN[†] and Phillip A. OSTRAND

(Received Dec. 23, 1974)

Let G be the free group on two generators, and L^2 the Hilbert space of square summable complex valued functions on G. Let \mathcal{L} and \mathcal{R} be the C^* algebras generated respectively by the left and right regular representations of G on L^2 and let \mathfrak{A} be the C^* -algebra generated by \mathcal{L} and \mathcal{R} jointly. In [1] the authors provided a formula for computing the norm of certain operators in \mathcal{L} . In this paper the results of [1] are applied to the study of \mathfrak{A} , which may be regarded as a C^* -tensor product. (See the remark preceding Lemma 4.) We prove that \mathfrak{A} contains the compact operators \mathcal{C} in L^2 (Theorem 1) as its only closed two-sided ideal (Theorem 3), and that there is a derivation of \mathfrak{A} into \mathcal{C} which is not inner (Example 5). This investigation was suggested by Jun Tomiyama and Masamichi Takesaki at the Japan-U. S. Seminar on C^* -Algebras and Applications to Physics in Kyoto in May of 1974. Some related papers are listed in the references.

§1. Notation and Terminology.

Let S be a non-empty set. By $L^2(S)$ we mean the vector space of square summable complex valued functions on S. We prefer, however, to write the elements of $L^2(S)$ as (generally) infinite linear combinations, identifying the complex valued function f on S with the vector $\sum_{w \in S} f(w)w$. Thus we have

$$L^2(S) = \{ \sum_{w \in S} \lambda_w w \mid \sum_{w \in S} |\lambda_w|^2 < \infty \}.$$

 $L^{2}(S)$ is a Hilbert space with inner product

$$(\sum_{w\in S}\lambda_w w, \sum_{w\in S}\mu_w w) = \sum_{w\in S}\lambda_w \bar{\mu}_w,$$

and resulting l_2 norm

$$\|\sum_{w\in S}\lambda_w w\|_2 = (\sum_{w\in S}|\lambda_w|^2)^{\frac{1}{2}}.$$

By L(S) we mean the subspace of $L^2(S)$ spanned by S; i.e., L(S) consists of

^{*} Partially supported by National Science Foundation grant GP-19101.