On a tensor product C^{*}-algebra associated with the free group on two generators

By Charles A. Akemann ${ }^{\dagger}$ and Phillip A. Ostrand

(Received Dec. 23, 1974)

Let G be the free group on two generators, and L^{2} the Hilbert space of square summable complex valued functions on G. Let \mathcal{L} and \mathscr{R} be the C^{*} algebras generated respectively by the left and right regular representations of G on L^{2} and let \mathfrak{A} be the C^{*}-algebra generated by \mathcal{L} and \mathscr{R} jointly. In [1] the authors provided a formula for computing the norm of certain operators in \mathcal{L}. In this paper the results of [1] are applied to the study of \mathfrak{N}, which may be regarded as a C^{*}-tensor product. (See the remark preceding Lemma 4.) We prove that \mathfrak{A} contains the compact operators \mathcal{C} in L^{2} (Theorem 1) as its only closed two-sided ideal (Theorem 3), and that there is a derivation of \mathfrak{A} into \mathcal{C} which is not inner (Example 5). This investigation was suggested by Jun Tomiyama and Masamichi Takesaki at the Japan-U.S. Seminar on C^{*} Algebras and Applications to Physics in Kyoto in May of 1974. Some related papers are listed in the references.

§ 1. Notation and Terminology.

Let S be a non-empty set. By $L^{2}(S)$ we mean the vector space of square summable complex valued functions on S. We prefer, however, to write the elements of $L^{2}(S)$ as (generally) infinite linear combinations, identifying the complex valued function f on S with the vector $\sum_{w \in S} f(w) w$. Thus we have

$$
L^{2}(S)=\left\{\left.\sum_{w \in S} \lambda_{w} w\left|\sum_{w \in S}\right| \lambda_{w}\right|^{2}<\infty\right\} .
$$

$L^{2}(S)$ is a Hilbert space with inner product

$$
\left(\sum_{w \in S} \lambda_{w} w, \sum_{w \in S} \mu_{w} w\right)=\sum_{w \in S} \lambda_{w} \bar{\mu}_{w},
$$

and resulting l_{2} norm

$$
\left\|\sum_{w \in S} \lambda_{w} w\right\|_{2}=\left(\sum_{w \in S}\left|\lambda_{w}\right|^{2}\right)^{\frac{1}{2}} .
$$

By $L(S)$ we mean the subspace of $L^{2}(S)$ spanned by S; i. e., $L(S)$ consists of

[^0]
[^0]: \dagger Partially supported by National Science Foundation grant GP-19101.

