A simplified proof of a theorem of Kato on linear evolution equations

By J. R. DORROH

(Received Sept. 3, 1974)

In [2], T. Kato proved some basic and important theorems about systems $\{U(t, s) ; 0 \leqq s \leqq t \leqq T\}$ of bounded linear transformations associated with a linear evolution equation

$$
d u / d t+A(t) u=f(t), \quad 0 \leqq t \leqq T
$$

Here, f is a given function from [0,T] into a Banach space $X, A(t)$ is a given, in general unbounded, linear operator in X, and the unknown function u is from [$0, T$] into X. These theorems were strengthened and made more useful in [3], and the proofs were simplified by using a device due to Yosida, [5], [6]. The theorems of [3] were further generalized in Kato's subsequent paper [4]. For the most part, the proofs in [3] are quite easy to follow; in fact, remarkably so, considering the strength of the results. However, the proof of one of the theorems, [3; Theorem 6.1], is considerably more complicated than the others. We give a simplified proof of this theorem that extends to the more general case treated in [4]. We will give the proof first in the simpler setting of [3] and then point out how it extends to [4].

Unless otherwise specified, notation and terminology is the same as in [3]. In particular, X and Y are Banach spaces, with Y densely and continuously imbedded in X, and for each $t \in[0, T], A(t)$ is a linear operator in X such that $-A(t)$ is the infinitesimal generator of a class C_{0} semigroup (see [1] or [6]) of linear transformations in X. Assume, as in [3; Theorem 4.1], that:
(i) $\{A(t)\}$ is stable; i. e., there are constants M, β such that

$$
\left\|\prod_{j=1}^{k}\left(A\left(t_{j}\right)+\lambda\right)^{-1}\right\| \leqq M(\lambda-\beta)^{-k}
$$

for $\lambda>\beta$ and $0 \leqq t_{1} \leqq \cdots \leqq t_{k} \leqq T, k=1,2, \cdots$.
(ii) Y is $A(t)$-admissible for each t (the semigroup generated by $-A(t)$ leaves Y invariant and forms a semigroup of class C_{0} in Y), and if $\tilde{A}(t)$ is the part of $A(t)$ in Y, then $\{\tilde{A}(t)\}$ is stable.
(iii) $Y \subset D(A(t))$ for each t, and $A(t)$ is norm continuous from [$0, T]$ into $B(Y, X)$.

Let $\{U(t, s) ; 0 \leqq s \leqq t \leqq T\} \subset B(X)$ be the evolution operator for the family

