On fixed point free $S O(3)$-actions on homotopy 7 -spheres

By Tomoyoshi YoshidA

(Received July 4, 1974)

§ 0. Introduction.

Let $S O$ (3) be the rotation group (see $\S 1$). In this paper, we shall study smooth $S O(3)$-actions on homotopy 7 -spheres without fixed points. Our category is the smooth category. In [5], we have studied some $S O(3)$-actions on homotopy 7 -spheres, mainly in the case with two or three orbit types. In that case, the actions have fixed points (see [5]). Our present paper is concerned with the case without fixed points.

Let α and β be the real irreducible representations of $S O(3)$ of dimension 3 and 5 respectively (see $\S 1$). Then $\alpha \oplus \beta$ induces a linear action of $S O(3)$ on the 7 -sphere S^{7}. A simple observation shows that this is the only linear action on S^{7} which has no fixed points. Let $\left(\Sigma^{7}, \varphi\right)$ be a smooth $S O(3)$-action on a homotopy 7 -sphere Σ^{7} (here $\varphi ; S O(3) \times \Sigma^{7} \rightarrow \Sigma^{7}$ is a smooth map defining the action). For $g \in S O(3)$ and $x \in \Sigma^{7}, g x$ denotes $\varphi(g, x)$. The isotropy subgroup of x, G_{x}, is defined by $G_{x}=\{g \in S O(3) \mid g x=x\}$. Then the set of the conjugacy classes $\left\{\left(G_{x}\right) \mid x \in \Sigma^{7}\right\}$ is called as the isotropy subgroup type of (Σ^{7}, φ). Now we assume that $\left(\Sigma^{7}, \varphi\right)$ is fixed point free, that is, for each $x \in \Sigma^{7}, G_{x}$ is a proper subgroup of $S O(3)$. Then we ask if the isotropy subgroup type of $\left(\Sigma^{7}, \varphi\right)$ coincides with that of the linear action $\alpha \oplus \beta$. The answer is given by the following two theorems.

Theorem I. Let $\left(\Sigma^{7}, \varphi\right)$ be a smooth $S O(3)$-action on a homotopy 7-sphere Σ^{7} without fixed points. Then the isotropy subgroup type of $\left(\Sigma^{7}, \varphi\right)$ is one of the following two types,
(a) $\left\{(e),\left(Z_{2}\right),\left(D_{2}\right),(S O(2)),(N)\right\}$ and
(b) $\left\{(e),\left(Z_{2}\right),\left(D_{2}\right),(S O(2)),(N),\left(Z_{2 k+1}\right),\left(D_{2 k+1}\right)\right\}(k$ is a positive integer), (For the notations see §1).

The type (a) in the above theorem is that of the linear action $\alpha \oplus \beta$ (§ 2). There is no linear action having (b) as its isotropy subgroup type.

Theorem II. For each positive integer k, there is a smooth $\operatorname{SO}(3)$-action on the standard 7 -sphere S^{7} with isotropy subgroup type (b) of Theorem I.

Theorem I will be proved in $\S 3$ and Theorem II in $\S 4$.

