On fixed point free SO(3)-actions on homotopy 7-spheres

By Tomoyoshi Yoshida

(Received July 4, 1974)

§ 0. Introduction.

Let SO(3) be the rotation group (see § 1). In this paper, we shall study smooth SO(3)-actions on homotopy 7-spheres without fixed points. Our category is the smooth category. In [5], we have studied some SO(3)-actions on homotopy 7-spheres, mainly in the case with two or three orbit types. In that case, the actions have fixed points (see [5]). Our present paper is concerned with the case without fixed points.

Let α and β be the real irreducible representations of SO(3) of dimension 3 and 5 respectively (see § 1). Then $\alpha \oplus \beta$ induces a linear action of SO(3) on the 7-sphere S^7 . A simple observation shows that this is the only linear action on S^7 which has no fixed points. Let (Σ^7, φ) be a smooth SO(3)-action on a homotopy 7-sphere Σ^7 (here φ ; $SO(3) \times \Sigma^7 \to \Sigma^7$ is a smooth map defining the action). For $g \in SO(3)$ and $x \in \Sigma^7$, gx denotes $\varphi(g, x)$. The isotropy subgroup of x, G_x , is defined by $G_x = \{g \in SO(3) | gx = x\}$. Then the set of the conjugacy classes $\{(G_x) | x \in \Sigma^7\}$ is called as the isotropy subgroup type of (Σ^7, φ) . Now we assume that (Σ^7, φ) is fixed point free, that is, for each $x \in \Sigma^7$, G_x is a proper subgroup of SO(3). Then we ask if the isotropy subgroup type of (Σ^7, φ) coincides with that of the linear action $\alpha \oplus \beta$. The answer is given by the following two theorems.

THEOREM I. Let (Σ^{τ}, φ) be a smooth SO(3)-action on a homotopy 7-sphere Σ^{τ} without fixed points. Then the isotropy subgroup type of (Σ^{τ}, φ) is one of the following two types,

- (a) $\{(e), (Z_2), (D_2), (SO(2)), (N)\}$ and
- (b) $\{(e), (Z_2), (D_2), (SO(2)), (N), (Z_{2k+1}), (D_{2k+1})\}\ (k \text{ is a positive integer}), (For the notations see § 1).$

The type (a) in the above theorem is that of the linear action $\alpha \oplus \beta$ (§ 2). There is no linear action having (b) as its isotropy subgroup type.

THEOREM II. For each positive integer k, there is a smooth SO(3)-action on the standard 7-sphere S^7 with isotropy subgroup type (b) of Theorem I.

Theorem I will be proved in § 3 and Theorem II in § 4.