On a class number relation of imaginary abelian fields

By Aichi Kudo

(Received March 5, 1974)

§ 1. Introduction.

Let k_{0} be the cyclotomic field $Q\left(\zeta_{p}\right)$ generated by a primitive p-th root of unity ζ_{p} over the rationals Q, where p is a prime number >3. Let k_{0}^{+}be the maximal real subfield of k_{0}. Recently, Metsänkylä [7], [8] gave a relation between the class number h_{0}^{+}of k_{0}^{+}and the relative class number h_{0}^{-}of k_{0} / k_{0}^{+}in the form

$$
\begin{equation*}
h_{0}^{-} \equiv G h_{0}^{+} \quad(\bmod p), \tag{1}
\end{equation*}
$$

where G is an explicitly given integer.
In this paper we shall generalize this relation (1) to the class number factors $h_{\bar{K}}$ and h_{K}^{+}of certain imaginary abelian number field K over Q (Theorems $1,2, \S 3$), by means of continuity of p-adic L-functions [4], [5] and the p-adic formulas for $h_{K}^{+}[6]$ and $h_{\bar{K}}$. For this purpose, we use some results connected with p-adic L-functions which are derived by Fresnel [2] and simplified by Shiratani [10].

Denote by q a square-free integer >1 and by $d=3 q$ the discriminant of a real quadratic number field. Consider the real field $Q(\sqrt{3 q})$ and the imaginary field $Q(\sqrt{-q})$. As an application of our Theorems 1, 2, we shall obtain a classical result ((21), §4) of Ankeny-Artin-Chowla [1], which states a congruence relation modulo 3 between the class numbers of $Q(\sqrt{3 q})$ and $Q(\sqrt{-q})$ for $q \equiv 1(\bmod 3)$. Furthermore in $\S 4$ we shall give some similar results other than (21).

§2. Relations between $L_{p}(0, \chi)$ and $L_{p}(1, \chi)$.

Let p be an arbitrarily fixed prime number, Q_{p} the field of rational p-adic numbers and Z_{p} the ring of rational p-adic integers. Let χ be an even Dirichlet character and $L_{p}(s, \chi)$ the p-adic L-function for χ. The function $L_{p}(s, \chi)$ is a continuous function of $s \in Z_{p}(s \neq 1)$, and if χ is not the principal character, then $L_{p}(s, \chi)$ is continuous at $s=1$ [4], [5]. A Dirichlet character

