Manifolds with vanishing Weyl or Bochner curvature tensor

By Bang-yen Chen and Kentaro Yano

(Received Sept. 26, 1973)

§ 1. Introduction.

Let M be a Riemannian manifold of dimension $n>3$ and denote by $g_{j i}$, $K_{k j i}{ }^{h}, K_{j i}$ and K the metric tensor, the curvature tensor, the Ricci tensor and the scalar curvature of M respectively.

If M is locally conformal to a Euclidean space then M is said to be conformally flat. For a conformally flat M, the Weyl conformal curvature tensor given by

$$
\begin{equation*}
C_{k j i}{ }^{h}=K_{k j i}{ }^{h}+\delta_{k}^{h} C_{j i}-\delta_{j}^{h} C_{k i}+C_{k}{ }^{h} g_{j i}-C_{j}{ }^{h} g_{k i} \tag{1.1}
\end{equation*}
$$

vanishes identically, where

$$
\begin{equation*}
C_{j i}=-\frac{1}{n-2} K_{j i}+\frac{1}{2(n-1)(n-2)} K g_{j i}, \quad C_{k}^{h}=C_{k t} g^{t h}, \tag{1.2}
\end{equation*}
$$

$g^{t h}$ being contravariant components of the metric tensor. Conversely if $C_{k j i}{ }^{h}$ vanishes identically, then M is conformally flat [3], [6].

One of the purposes of the present paper is to prove the following:
Theorem 1. In order that a Riemannian manifold of dimension $n>3$ is conformally flat, it is necessary and sufficient that there exists a (unique) quadratic form Q on the manifold such that the sectional curvature $K(\sigma)$ with respect to a section σ is the trace of the restriction of Q to σ, i.e. $K(\sigma)=$ trace Q / σ, the metric being also restricted to σ.

Let M be an n-dimensional Kaehlerian manifold and denote by $g_{j i}, F_{i}{ }^{h}$, $K_{k j i}{ }^{h}, K_{j i}$ and K the metric tensor, the complex structure tensor, the curvature tensor, the Ricci tensor and the scalar curvature of M respectively. Bochner [1] (see also [4], [9]) introduced a curvature tensor given by

$$
\begin{align*}
B_{k j i}{ }^{h}= & K_{k j i}{ }^{h}+\partial_{k}^{h} L_{j i}-\delta_{j}^{h} L_{k i}+L_{k}{ }^{h} g_{j i}-L_{j}{ }^{h} g_{k i} \tag{1.3}\\
& +F_{k}{ }^{h} M_{j i}-F_{j}{ }^{h} M_{k i}+M_{k}{ }^{h} F_{j i}-M_{j}{ }^{h} F_{k i}-2\left(M_{k j} F_{i}{ }^{h}+F_{k j} M_{i}{ }^{h}\right),
\end{align*}
$$

where

$$
\begin{gathered}
L_{j i}=-\frac{1}{n+4} K_{j i}+\frac{1}{2(n+2)(n+4)} K g_{j i}, \quad L_{k}{ }^{h}=L_{k t} g^{t h}, \\
M_{j i}=-L_{j t} F_{i}{ }^{t}, \quad M_{k}{ }^{h}=M_{k t} g^{t h}
\end{gathered}
$$

