J. Math. Soc. Japan Vol. 27, No. 1, 1975

A construction of β -normal sequences

By Shunji ITO and Iekata SHIOKAWA

(Received May 11, 1973) (Revised Nov. 17, 1973)

In this paper we define the normality of sequences in the scale of not necessarily integral β and give a construction of β -normal sequences as a generalization of Champernowne's construction of normal sequences.

Let $\beta > 1$ be a fixed real number. Define a transformation T_{β} on the unit interval, which we call β -transformation, as follows: $T_{\beta}x = \beta x - \lfloor \beta x \rfloor$, $0 \leq x < 1$, where $\lfloor z \rfloor$ is the integral part of z. Then T_{β} has an invariant probability measure μ_{β} , under which T_{β} is ergodic, such that

$$1 - \beta^{-1} < \frac{d\mu_{\beta}}{dx} = \frac{1}{E_{\beta}} \sum_{n=0}^{\infty} \frac{c_n(x)}{\beta^n} < (1 - \beta^{-1})^{-1},$$

where

$$c_{n}(x) = \begin{cases} 1 & \text{if } x < T^{n}1, \\ 0 & \text{if } x \ge T^{n}1, \end{cases}$$
$$T^{0}1 = 1, \qquad T^{n}1 = T_{\beta}^{n-1}(\beta - [\beta]),$$

and E_{β} is the normalizing constant (see [2]). Recently the first named author and Y. Takahashi investigated in [1] the β -transformations as a class of symbolic dynamics and obtained various new results. Our theorem (in this paper) is a byproduct of these results.

Consider the β -adic expansion of a real number x, $0 \le x < 1$, i.e.

$$x = \sum_{n=0}^{\infty} \omega_n(x) \beta^{-n-1}$$

where $\omega_n(x) = [\beta T^n x]$, $n \ge 0$. Then through the mapping $\pi_\beta(x) = \omega_0(x)\omega_1(x)\cdots$ β -transformation is isomorphic to a shift on the one-sided product space A^N where A is the state space $\{0, 1, \dots, \beta_0\}$ and β_0 is the greatest integer less than β . Of course the measure on A^N is generated by $\pi_\beta \pi_\beta^{-1}$, which we again denote by μ_β . Now we define the β -normality of a sequence in A^N .

A sequence $b = b_0 b_1 b_2 \cdots$ in A^N is said to be β -normal if for any positive integer k and any word $u = u_1 u_2 \cdots u_k$ of length k we have

$$\lim_{n\to\infty} n^{-1}F_n(u) = \mu_\beta(u)$$