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In this paper we define the normality of sequences in the scale of not
necessarily integral $\beta$ and give a construction of $\beta$ -normal sequences as a
generalization of Champernowne’s construction of normal sequences.

Let $\beta>1$ be a fixed real number. Define a transformation $T_{\beta}$ on the unit
interval, which we call $\beta$ -transformation, as follows: $T_{\beta}x=\beta x-[\beta x],$ $0\leqq x<1$ ,

where $[z]$ is the integral part of $z$. Then $T_{\beta}$ has an invariant probability
measure $\mu_{\beta}$ , under which $T_{\beta}$ is ergodic, such that

$1-\beta^{-1}<\frac{d\mu_{\beta}}{dx}=\frac{1}{E_{\beta}}\sum_{n=0}^{\infty}\frac{c_{n}(x)}{\beta^{n}}<(1-\beta^{-1})^{-1}$

where

$c_{n}(x)=\left\{\begin{array}{ll}1 & if x<T^{n}1 ,\\0 & if x\geqq T^{n}1,\end{array}\right.$

$T^{0}1=1$ , $T^{n}1=T\beta^{-1}(\beta-[\beta])$ ,

and $E_{\beta}$ is the normalizing constant (see [2]). Recently the first named author
and Y. Takahashi investigated in [1] the $\beta$ -transformations as a class of
symbolic dynamics and obtained various new results. Our theorem (in this
paper) is a byproduct of these results.

Consider the $\beta$ -adic expansion of a real number $x,$ $0\leqq x<1,$ $i$ . $e$ .

$x=\sum_{n=0}^{\infty}\omega_{n}(x)\beta^{-n- 1}$

where $\omega_{n}(x)=[\beta T^{n}x],$ $n\geqq 0$ . Then through the mapping $\pi_{\beta}(x)=\omega_{0}(x)\omega_{1}(x)\cdots$

$\beta$-transformation is isomorphic to a shift on the one-sided product space $A^{N}$

where $A$ is the state space $\{0,1, \cdots , \beta_{0}\}$ and $\beta_{0}$ is the greatest integer less
than $\beta$ . Of course the measure on $A^{N}$ is generated by $\pi_{\beta}\pi_{\beta}^{-1}$ , which we again
denote by $\mu_{\beta}$ . Now we define the $\beta$ -normality of a sequence in $A^{N}$ .

A sequence $ b=b_{0}b_{1}b_{2}\cdots$ in $A^{N}$ is said to be $\beta$ -normal if for any positive
integer $k$ and any word $u=u_{1}u_{2}\cdots u_{k}$ of length $k$ we have

$\lim_{n\rightarrow\infty}n^{-1}F_{n}(u)=\mu_{\beta}(u)$


