Cusps of certain symmetric bounded domains

By Kenichi IYANAGA

(Received Sept. 14, 1973) (Revised Jan. 23, 1974)

Introduction.

Let K be a quadratic extension of a field k whose characteristic is not 2; $K = k(\sqrt{\alpha})$. Let (V, H) be a non-degenerate Hermitian vector space defined over K/k. There exists a functor sending each (V, H) to an alternating vector space (V', A') given by $V' = \mathcal{R}_{K/k}V$, $A'(x, y) = (H(x, y) - H(y, x))/2\sqrt{\alpha}$. When K/k is a totally imaginary quadratic extension of a totally real number field, the above functor gives rise to a "holomorphic imbedding" sending a symmetric bounded domain of type I, denoted by D^{I} , into a Siegel space, or a symmetric bounded domain of type III, denoted by D^{III} . Furthermore, when we are given a lattice L in V, the above functor induces a homomorphism sending the arithmetic subgroup Γ^{I} of SU(V, H) stabilizing L into the subgroup Γ^{III} of Sp(V', A') stabilizing $\mathfrak{R}_{K/k}L$. Thus we obtain a mapping ρ sending "cusps" of D^{I} with respect to Γ^{I} into "cusps" of D^{III} with respect to Γ^{III} . Each "cusp" of D^{I} with respect to Γ^{I} is, by definition, a Γ^{I} -orbit of rational boundary components of the compactification \overline{D}^{I} ; a rational boundary component of \overline{D}^{r} is, on the other hand, associated to a totally isotropic subspace of V. The totality of the rational boundary components associated to totally isotropic subspaces of dimension s constitutes an SU(V, H)-orbit which is decomposed into a finite number of cusps, the totality of the latter being denoted by $\mathcal{C}_{s}^{I}(L)$. The mapping ρ sends $\mathcal{C}_{s}^{I}(L)$ into $\mathcal{C}_{2s}^{III}(\mathfrak{R}_{K/k}L)$. When L is an "3-modular lattice", with 3 assumed to be an ideal in k, the lattice $\Re_{K/k}L$ is maximal in V' and there exists a bijection Φ^{III} sending $\mathcal{C}_{2s}^{\text{III}}(\mathcal{R}_{K/k}L)$ onto the ideal class group C(k), (s > 0). On the other hand, the association of each element of $\mathcal{C}^{\mathbf{I}}_{\mathbf{s}}(L)$ corresponding to a totally isotropic subspace U of V to the ideal class of the lattice $L \cap U$ gives a mapping $\widetilde{\Phi}^{I}: C_{s}^{I}(L) \to C(K)$ which is, under a certain condition, bijective (Theorem 1.8 and its Corollaries, Ch. II). The main result of this note asserts the existence of a surjection $\nu_s: C(K)$ $\rightarrow C(k)$ closely connected to the norm $N_{K/k}$, such that the following diagram is commutative (Theorem 3.3, Ch. II):