On homogeneous P^N -bundles over an abelian variety

By Akira MIZUHARA

(Received Oct. 19, 1972) (Revised Sept. 7, 1973)

Let $M=M(T, \pi, P^N)$ be a P^N -bundle over an abelian variety $T, G = \operatorname{Aut}^0 M$ and $H = \operatorname{Aut}^0 T$ the connected components of the complex Lie groups containing the identities of all holomorphic automorphisms of M and T respectively. Then there exists a holomorphic homomorphism π_* of G into H canonically induced by π .

M is said to be a homogeneous bundle if π_* is surjective. If M is a bundle defined by a homomorphism of the fundamental group Γ of T into PGL(N), it is called a *flat bundle*.

In §1, we shall prove the following proposition.

PROPOSITION. Let M be a P^{N} -bundle over an abelian variety T. Then M is a homogeneous bundle if and only if it is a flat bundle.

Let α be a homomorphism of Γ into PGL(N). We call α of finite type if Im α is a finite group. In §2, we shall prove the following proposition.

PROPOSITION. Let M be a flat P^{N} -bundle over an abelian variety T defined by a homomorphism α . If α is of finite type, then

1) $A \times P^{N}$ is a finite holomorphic covering manifold of M, where $A = C^{n}/\ker \alpha$,

2) there exists a Kähler metric canonically induced by that of $A \times P^{N}$ such that the corresponding Ricci curvature of M is positive semi-definite.

A connected compact complex manifold M is called an *almost homogeneous* manifold if there exists a complex subgroup G of Aut M such that the G-orbit through some point of M contains an open subset of M.

COROLLARY. Assume that N+1 is a prime number. If the bundle space of a P^{N} -bundle M over an abelian variety T is an almost homogeneous manifold, then there exists a flat vector bundle E over T such that M is the projection of E.

We shall give an example of an almost homogeneous P^{3} -bundle over an abelian variety T which is not the projection of a flat vector bundle over T.

In §3, we shall classify homogeneous P^2 -bundles over an abelian variety T and give a necessary and sufficient condition that such a bundle space is an almost homogeneous manifold.