On meromorphic maps into the complex projective space

By Hirotaka Fujimoto

(Received Nov. 16, 1972)
(Revised March 26, 1973)

§ 1. Introduction.

In [10], the big Picard theorem was generalized by P. Montel to the case of a meromorphic function $\varphi(z)(\not \equiv 0)$ which satisfies the condition that the multiplicities of any zeros of $\varphi(z), \frac{1}{\varphi(z)}$ and $\varphi(z)-1$ are always multiples of p, q and r, respectively, where p, q and r are arbitrarily fixed positive integers with

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1 .
$$

The main purpose of this paper is to give analogous generalizations of the extension theorems and degeneracy theorems of holomorphic maps into the N-dimensional complex projective space $P_{N}(C)$ omitting some hyperplanes given in the previous papers [4] and [5].

Let $\left\{H_{i} ; 1 \leqq i \leqq q\right\}(q \geqq N+2)$ be hyperplanes in $P_{N}(C)$ located in general position. Associate with each H_{i} a positive integer $m_{i}(\leqq+\infty)$ such that

$$
\begin{equation*}
\sum_{i=1}^{N+1} \frac{1}{m_{i}}+\frac{1}{m_{q}}<\frac{1}{N} \tag{1.1}
\end{equation*}
$$

when they are arranged as $m_{1} \geqq m_{2} \geqq \cdots \geqq m_{q}$ by a suitable change of indices. We consider in this paper a meromorphic map f of a domain D in C^{n} into $P_{N}(C)$ with the property that $f(D) \nsubseteq H_{i}(1 \leqq i \leqq q)$ and the intersection multiplicity of the image of f with each H_{i} at a point w is always a common multiple of all m_{j} 's for j with $w \in H_{j}$. If the image of f omits any $H_{i}(1 \leqq$ $i \leqq q$), then we can take $m_{i}=\infty$ or $\frac{1}{m_{i}}=0$ in the above and so (1.1) is necessarily valid. Holomorphic maps studied in [4] and [5] are thus a special case of what is treated here.

The first main result in this paper is the following generalization of Theorem A in [4].

Let f be a meromorphic map of a domain D excluding a nowhere dense analytic subset S into $P_{N}(C)$ with the above property. Then f has a meromor-

