J. Math. Soc. Japan Vol. 26, No. 2, 1974

On meromorphic maps into the complex projective space

By Hirotaka FUJIMOTO

(Received Nov. 16, 1972) (Revised March 26, 1973)

§1. Introduction.

In [10], the big Picard theorem was generalized by P. Montel to the case of a meromorphic function $\varphi(z) \ (\equiv 0)$ which satisfies the condition that the multiplicities of any zeros of $\varphi(z)$, $\frac{1}{\varphi(z)}$ and $\varphi(z)-1$ are always multiples of p, q and r, respectively, where p, q and r are arbitrarily fixed positive integers with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1.$$

The main purpose of this paper is to give analogous generalizations of the extension theorems and degeneracy theorems of holomorphic maps into the N-dimensional complex projective space $P_N(C)$ omitting some hyperplanes given in the previous papers [4] and [5].

Let $\{H_i; 1 \leq i \leq q\}$ $(q \geq N+2)$ be hyperplanes in $P_N(C)$ located in general position. Associate with each H_i a positive integer $m_i (\leq +\infty)$ such that

(1.1)
$$\sum_{i=1}^{N+1} \frac{1}{m_i} + \frac{1}{m_q} < \frac{1}{N}$$

when they are arranged as $m_1 \ge m_2 \ge \cdots \ge m_q$ by a suitable change of indices. We consider in this paper a meromorphic map f of a domain D in C^n into $P_N(C)$ with the property that $f(D) \subset H_i$ $(1 \le i \le q)$ and the intersection multiplicity of the image of f with each H_i at a point w is always a common multiple of all m_j 's for j with $w \in H_j$. If the image of f omits any H_i $(1 \le i \le q)$, then we can take $m_i = \infty$ or $\frac{1}{m_i} = 0$ in the above and so (1.1) is necessarily valid. Holomorphic maps studied in [4] and [5] are thus a special case of what is treated here.

The first main result in this paper is the following generalization of Theorem A in [4].

Let f be a meromorphic map of a domain D excluding a nowhere dense analytic subset S into $P_N(C)$ with the above property. Then f has a meromor-