Ramanujan's formulas for \boldsymbol{L}-functions

(To the memory of Professor Sigekatu Kuroda)

By Koji Katayama

(Received Aug. 24, 1972)
(Revised May 9, 1973)

Let $\zeta(s)$ be the Riemann's zeta-function. It is famous that $\zeta(2 \nu), 0<\nu \in Z$, is represented in terms of Bernoulli number and $\pi^{2 \nu}$ and so is rational up to $\pi^{2 \nu}$. But the numerical nature of $\zeta(2 \nu+1), \nu \geqq 1$, has long been unknown. As far as the author knows, only Ramanujan's formula*) is one involving $\zeta(2 \nu+1)$.

Let χ be a non-principal primitive character $\bmod k$ and $L(s, \chi)$ a Dirichlet L-function associated with χ. Then it is known that $L(2 \nu, \chi), \nu \geqq 1$, for even χ and $L(2 \nu+1, \chi), \nu \geqq 1$, for odd χ are represented by the generalized Bernoulli numbers in the sense of Leopoldt up to $\pi^{2 \nu}$ and $\pi^{2 \nu+1}$, respectively**). Analogously to the case of $\zeta(s)$, the numerical properties of $L(2 \nu+1, \chi)$ for even χ and of $L(2 \nu, \chi)$ for odd χ are unknown. Thus we are naturally led to ask "Ramanujan's formulas" for these values.

Now the purpose of the present paper is to formulate and prove "Ramanujan's formulas" for L-functions. Put

$$
T_{\chi}=\sum_{h=0}^{k-1} \chi(h) e^{2 \pi i h / k} .
$$

Then for any $n>0$, we have

$$
\begin{equation*}
\chi(n) T_{\bar{\chi}}=\sum_{h=0}^{k-1} \bar{\chi}(h) e^{2 \pi i n h / k} . \tag{0}
\end{equation*}
$$

We define, for $0<a \in \boldsymbol{Z}$ and for $x>0$,

$$
F_{1}(a, x, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{a}} \frac{1}{e^{2 \pi m x}-1}
$$

and

$$
F_{2}(a, x, \chi)=\sum_{h=0}^{k-1} \bar{\chi}(h) \sum_{n=1}^{\infty} \frac{1}{n^{a}} \frac{e^{2 \pi n x h / k}}{e^{2 \pi n x}-1} .
$$

Then our formulas are formulated as follows:

[^0]
[^0]: *) See for example [2].
 ${ }^{* *)}$ The value $L(1, \chi)$ with odd or even χ is given in finite type at p .336 of Borevich and Shafarevich's book "Number Theory, Academic Press, (1966)".

