Ramanujan's formulas for L-functions

(To the memory of Professor Sigekatu Kuroda)

By Koji KATAYAMA

(Received Aug. 24, 1972) (Revised May 9, 1973)

Let $\zeta(s)$ be the Riemann's zeta-function. It is famous that $\zeta(2\nu)$, $0 < \nu \in \mathbb{Z}$, is represented in terms of Bernoulli number and $\pi^{2\nu}$ and so is rational up to $\pi^{2\nu}$. But the numerical nature of $\zeta(2\nu+1)$, $\nu \ge 1$, has long been unknown. As far as the author knows, only Ramanujan's formula^{*)} is one involving $\zeta(2\nu+1)$.

Let χ be a non-principal primitive character mod k and $L(s, \chi)$ a Dirichlet *L*-function associated with χ . Then it is known that $L(2\nu, \chi)$, $\nu \ge 1$, for even χ and $L(2\nu+1, \chi)$, $\nu \ge 1$, for odd χ are represented by the generalized Bernoulli numbers in the sense of Leopoldt up to $\pi^{2\nu}$ and $\pi^{2\nu+1}$, respectively^{**)}. Analogously to the case of $\zeta(s)$, the numerical properties of $L(2\nu+1, \chi)$ for even χ and of $L(2\nu, \chi)$ for odd χ are unknown. Thus we are naturally led to ask "Ramanujan's formulas" for these values.

Now the purpose of the present paper is to formulate and prove "Ramanujan's formulas" for L-functions. Put

$$T_{\chi} = \sum_{h=0}^{k-1} \chi(h) e^{2\pi i h/k} \,.$$

Then for any n > 0, we have

(0)

$$\chi(n)T_{\bar{\chi}} = \sum_{h=0}^{k-1} \bar{\chi}(h)e^{2\pi i n h/k}$$

We define, for $0 < a \in \mathbb{Z}$ and for x > 0,

$$F_1(a, x, \chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^a} \frac{1}{e^{2\pi m x} - 1}$$

and

$$F_{2}(a, x, \chi) = \sum_{h=0}^{k-1} \bar{\chi}(h) \sum_{n=1}^{\infty} \frac{1}{n^{a}} \frac{e^{2\pi n x h/k}}{e^{2\pi n x} - 1}$$

Then our formulas are formulated as follows:

^{*)} See for example [2].

^{**)} The value $L(1, \chi)$ with odd or even χ is given in finite type at p. 336 of Borevich and Shafarevich's book "Number Theory, Academic Press, (1966)".