J. Math. Soc. Japan
Vol. 26, No. 2, 1974

Ramanujan’s formulas for L-functions

(To the memory of Professor Sigekatu Kuroda)

By Koji KATAYAMA

(Received Aug. 24, 1972)
(Revised May 9, 1973)

Let {(s) be the Riemann’s zeta-function. It is famous that {(2v), 0<veZ,
is represented in terms of Bernoulli number and z** and so is rational up to
n*. But the numerical nature of ¢(2v+1), v=1, has long been unknown.
As far as the author knows, only Ramanujan’s formula® is one involving
C(2v+1).

Let X be a non-principal primitive character mod 2 and L(s, X) a Dirichlet
L-function associated with X. Then it is known that L2y, X), v=1, for even
X and L(2v+1, X), v=1, for odd X are represented by the generalized Ber-
noulli numbers in the sense of Leopoldt up to #* and =**!, respectively**®,
Analogously to the case of {(s), the numerical properties of L(2v+1, X) for
even X and of L(2v, X) for odd X are unknown. Thus we are naturally led
to ask “Ramanujan’s formulas” for these values.

Now the purpose of the present paper is to formulate and prove “Rama-
nujan’s formulas” for L-functions. Put
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Then our formulas are formulated as follows:

*) See for example [2].
**) The value L(1, X) with odd or even X is given in finite type at p. 336 of
Borevich and Shafarevich’s book “Number Theory, Academic Press, (1966)”.



