Correction to "A note on the large inductive dimension of totally normal spaces"

(This journal, Vol. 21 (1969), 282-290)

By Keio NAGAMI

(Received May 7, 1973)

The proof of the following corollary given in [1] is not correct, which was kindly noticed by Professor A. R. Pears. Please give a chance to correct it.

COROLLARY 2. Let $X(\neq \emptyset)$ and $Y(\neq \emptyset)$ be spaces such that $X \times Y$ is totally normal and σ -totally paracompact. Then

$$\operatorname{Ind}(X \times Y) \leq \operatorname{Ind}X + \operatorname{Ind}Y$$
.

PROOF (by induction on $\operatorname{Ind} X + \operatorname{Ind} Y$). When $\operatorname{Ind} X + \operatorname{Ind} Y = 0$, $\operatorname{Ind} X = \operatorname{Ind} Y = 0$. Hence $X \times Y$ has a base consisting of open and closed sets. Thus $\operatorname{Ind} (X \times Y) = 0$ and hence $\operatorname{Ind} (X \times Y) = 0$ by $[\mathbf{1}, \text{ Theorem 4}]$. Put the induction hypothesis that the inequality is true for the case when $\operatorname{Ind} X + \operatorname{Ind} Y < n$ and consider the case: $\operatorname{Ind} X + \operatorname{Ind} Y = n$, n > 0. Since each point of $X \times Y$ has an arbitrarily small neighborhood $U \times V$ with U and V open such that $\operatorname{Ind} B(U) < \operatorname{Ind} X$ and $\operatorname{Ind} B(V) < \operatorname{Ind} Y$, and $\operatorname{Ind} B(U \times V) \leq \max (\operatorname{Ind} (B(U) \times \overline{V})$, $\operatorname{Ind} (\overline{U} \times B(V)) \leq n - 1$ by $[\mathbf{1}, (e)]$, then $\operatorname{Ind} (X \times Y) \leq n$. Hence $\operatorname{Ind} (X \times Y) \leq n$ by $[\mathbf{1}, \text{ Theorem 4}]$ and the induction is completed. The proof is finished.

A similar error is in the proof of [2, Theorem 25-2] which can be corrected by the same argument as in the above.

References

- [1] K. Nagami, A note on the large inductive dimension of totally normal spaces, J. Math. Soc. Japan, 21 (1969), 282-290.
- √2] K. Nagami, Dimension theory, Academic Press, New York, 1970.

Keiô NAGAMI
Department of Mathematics
Faculty of Science
Ehime University
Bunkyo-cho, Matsuyama
Japan