On the factors of the jacobian variety of a modular function field

By Goro Shimura

(Received Nov. 13, 1972)

§ 0. Introduction.

For a positive integer N, put

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}, \\
& \Gamma_{1}(N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N) \right\rvert\, a \equiv d \equiv 1(\bmod N)\right\} .
\end{aligned}
$$

We consider any group Γ such that $\Gamma_{1}(N) \subset \Gamma \subset \Gamma_{0}(N)$, and call it a group of level N. Let J denote the jacobian variety of the compact Riemann surface $\mathfrak{J g}^{*} / \Gamma$, where \mathfrak{S}^{*} means the union of the upper half plane

$$
\mathscr{S}_{\mathfrak{I}}=\{z \in \boldsymbol{C} \mid \operatorname{Im}(z)>0\}
$$

and the cusps of Γ. Further let $S_{k}(\Gamma)$ be the vector space of all holomorphic cusp forms of weight k with respect to Γ. Then, with each common eigenfunction $f(z)$ in $S_{2}(\Gamma)$ of the Hecke operators T_{n} for all n, one can associate an abelian variety A that is a "factor" of J. The purpose of this note is to consider a few arithmetical questions concerning the correspondence between f and A. Besides, as an application of our methods, we shall give a proof of Dirichlet's class number formula for an imaginary quadratic field, without using the residue technique.

We start our treatment by proving that A can naturally be obtained as a quotient of J by an abelian subvariety rational over \boldsymbol{Q} (Theorem 1). Actually in $[11, \S 7.5]$, we gave a formulation with such a factor as a subvariety of J. The two formulations are essentially equivalent, but there is a subtle difference. At any rate, they are connected by the following fact: there is a canonical \boldsymbol{C}-linear isomorphism of $S_{2}(\Gamma)$ onto the tangent space of J at the origin, which has a certain commutative property with the action of Hecke operators. Such an isomorphism was used in the proofs of [11, Th. 7.14, Prop. 7.19] and also in [12], but not explicitly given. This point will be clarified in $\S 2$. It will be shown in $\S 3$ that A can be obtained as a complex torus whose periods are those of f and some other cusp forms. We shall consider

