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\S 1. Introduction.

1.1. The purpose of the present paper is to establish the asymptotic
formula for the number of representations of an integer as a sum of two
integral squares and a product of four positive integral factors.

Our problem is obviously equivalent to the study of the asymptotical

behaviour of the sum
(1) $\sum_{n<N}r(N-n)d_{4}(n)$ (as $ N\rightarrow\infty$ ) ,

where $r(n)$ and $d_{4}(n)$ stand for the number of representations of $n$ as a sum
of two squares and as a product of four factors, respectively.

Our problem and the so-called additive divisor problem are similar in
that each sum can be expressed as a combination of sums of iterated divisor
functions over arithmetic progressions with variable modulus, whose size
depends on the parameter $N$. But our problem has much greater difficulty
caused mainly by the inner structure of $r(n)$ . The same fact has been already
noticed by Hooley [1] between the divisor problem of Titchmarsh and a con-
jecture of Hardy and Littlewood. Hence our proof depends on various devices
of Hooley, and also the large sieve method plays an important role in this
paper.

1.2. Notation: To avoid the unnecessary complications we assume that
throughout this Paper the parameter $N$ is a sufficiently large odd integer.

$\epsilon$ is assumed to be positive and sufficiently small, and the constants in
the symbols “ $O$ ‘’ and $‘‘\ll$ depend on $\epsilon$ at most.

$(m, n)$ stands for the greatest common divisor of $m$ and $n$ . A prime
number is denoted by $p$ , and $p^{\alpha}\Vert n$ means that $p^{\alpha}$ is the highest power of $p$

which divides $n$ . The symbol $m\subset n$ indicates that all prime divisors of $m$

divide $n$ .
$\omega(n)$ and $\Omega(n)$ are respectively the numbers of different prime factors of

$n$ and the total number of prime factors of $n$ . $d(n)$ is the number of divisors
of $n$ , and $d_{k}(n)$ is the number of representations of $n$ as a product of $k$ factors.


